28.1.73 GaussianLorentz

Function

y_1 = y_0 + \frac{A_1}{w_1\sqrt{\frac{\pi}{2}}}e^{-2\left(\frac{x-x_c}{w_1}\right)^2}

y_2 = y_0 + 2\frac{A_2}{\pi}(\frac{w_2}{4(x-x_c)^2 + w_2^2)}

Brief Description

One independent and two dependent variables, shared parameters.

Sample Curve

GaussianLorentz.png

Parameters

Number: 6

Names: y0, xc, A1, A2, w1, w2

Meanings: y0 = offset, xc = center, A1 = area, A2 = area, w1 = width, w2 = width

Lower Bounds: w1 > 0.0, w2 > 0.0

Upper Bounds: none

Script Access

Function File

FITFUNC\GaussianLorentz.fdf

Category

Multiple Variables