18.4.1.3 References (FFT)

  1. James W. Cooley and John W. Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297 - 301 (1965).
  2. James C. Schatzman, Accuracy of the discrete Fourier transform and the fast Fourier transform. SIAM J. Sci. Comput. 17 (5), 1150 - 1166 (1996).
  3. Matteo Frigo and Steven G. Johnson. FFTW. http://www.fftw.org/.
  4. M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3. Proceedings of the IEEE 93 (2), 216 - 231 (2005).
  5. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. Chapter 30: Polynomials and the FFT, pp.822–848.
  6. William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling. 1992. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press
  7. M.Greitans. 2005. Adaptive STFT-like Time-Frequency analysis from arbitrary distributed signal samples. International Workshop on Sampling Theory and Application, Samsun, Turkey.
  8. Julius O. Smith III and Xavier Serra. PARSHL: An Analysis/Synthesis Program for Non-Harmonic Sounds Based on a Sinusoidal Representation. Proceedings of the International Computer Music Conference (ICMC-87, Tokyo), Computer Music Association, 1987.
  9. Bendat, J.S. and Piersol, A.G. 1986. Random Data: Analysis and Measurement Procedures, second edition. Wiley -Interscience, New York.
  10. Smith, Julius O. 2003. Mathematics of the Discrete Fourier Transform (DFT). W3K Publishing.