Referenz (FFT1)

  1. James W. Cooley und John W. Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comput. 19, 297–301 (1965).
  2. James C. Schatzman, Accuracy of the discrete Fourier transform and the fast Fourier transform. SIAM J. Sci. Comput. 17 (5), 1150–1166 (1996).
  3. Matteo Frigo und Steven G. Johnson. FFTW. http://www.fftw.org/.
  4. M. Frigo und S. G. Johnson. The Design and Implementation of FFTW3. Proceedings of the IEEE 93 (2), 216–-231 (2005).
  5. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest und Clifford Stein. Introduction to Algorithms, Second Edition. MIT Press and McGraw-Hill, 2001. Kapitel 30: Polynomials and the FFT, S. 822–-848.
  6. William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling. 1992. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press
  7. M.Greitans. 2005. Adaptive STFT-like Time-Frequency analysis from arbitrary distributed signal samples. International Workshop on Sampling Theory and Application, Samsun, Turkey.
  8. Julius O. Smith III und Xavier Serra. PARSHL: An Analysis/Synthesis Program for Non-Harmonic Sounds Based on a Sinusoidal Representation. Proceedings of the International Computer Music Conference (ICMC-87, Tokyo), Computer Music Association, 1987.
  9. Bendat, J.S. und Piersol, A.G. 1986. Random Data: Analysis and Measurement Procedures, Second Edition. Wiley -Interscience, New York.
  10. Smith, Julius O. 2003. Mathematics of the Discrete Fourier Transform (DFT). W3K Publishing.