Perform discriminant analysis and canonical discriminant analysis.
This feature is for OriginPro only. 
Display Name
 | 
Variable Name
 | 
I/O and Type
 | 
Default Value
 | 
Description
 | 
| Group for Training Data
 | 
group
 | 
 Input
 Range
 
 | 
 
 | 
 Select data from a column to specify group for training data.
 | 
| Training Data
 | 
var
 | 
 Input
 Range
 
 | 
 <active>
 | 
 Select data to specify training data. Note that beginning with Origin 2020b, there is a shortened syntax that follows the form [Book]Sheet!(N1:N2), N1 = the beginning column index and N2 being the ending column index in a contiguous range of columns. More complex strings from non-contiguous data of the form [Book]Sheet!([Book]Sheet!N1:N2,[Book]Sheet!N3:N4) are also possible.
 | 
| Predict Membership for Test Data
 | 
test
 | 
 Input
 int
 
 | 
 0
 | 
 Determine whether to predict membership for test data. If checked (1), pvar is available.
 | 
| Test Data
 | 
pvar
 | 
 Input
 Range
 
 | 
 
 | 
 Select data to specify test data.
 | 
| Prior Probabilities
 | 
prior
 | 
 Input
 int
 
 | 
 0
 | 
 Select the type of prior probabilities for each group.
 Option list:
 
- Equal
-  Prior probabilities are equal for all groups.
 
  
- Proportional to group size
-  Prior probability for a group is proportional to the number of observations in the group.
 
   
 | 
| Discriminant Function
 | 
method
 | 
 Input
 int
 
 | 
 0
 | 
 Select the method to classify.
 Option list:
 
- Linear
-  Using Linear Discriminant Function. The pooled within-group covariance matrix is used to calculate Mahalanobis distance. 
 
  
- Quadratic
-  Using Quadratic Discriminant Function. Within-group covariance matrices are used to calculate Mahalanobis distance. 
 
   
For more details, see the algorithm of discriminant functions. 
 
 | 
| Canonical Discriminant Analysis
 | 
candisc
 | 
 Input
 int
 
 | 
 1
 | 
 Specify whether (1) or not (0) to perform Canonical Discriminant Analysis.
 | 
| Cross Validation
 | 
cv
 | 
 Input
 int
 
 | 
 0
 | 
 Specify whether (1) or not (0) to classify training data using Cross Validation method.
 | 
| Descriptive Statistics
 | 
stat
 | 
 Input
 int
 
 | 
 1
 | 
 Specify whether (1) or not (0) to perform Descriptive Statistics on training data including means, standard deviations for each variable in each group and total.
 | 
| Descriptive Matrices
 | 
dmat
 | 
 Input
 int
 
 | 
 0
 | 
 Specify whether (1) or not (0) to calculate covariance matrix, correlation matrix and group distance(squared Mahalanobis) matrices of training data.
 | 
| Univariate ANOVA
 | 
anova
 | 
 Input
 int
 
 | 
 0
 | 
 Specify whether (1) or not (0) to perform Univariate ANOVA on training data to test the difference in group means for each variable.
 | 
| Equality Test of Covariance Matrices
 | 
equal
 | 
 Input
 int
 
 | 
 0
 | 
 Specify whether (1) or not (0) to perform Equality Test of Covariance Matrices on training data to test the equality of within-group covariance matrices.
 | 
| Pooled Within-group Covariance/Correlation Matrix
 | 
pcov
 | 
 Input
 int
 
 | 
 0
 | 
 Specify whether (1) or not (0) to output pooled within-group covariance matrix and correlation matrix for training data.
 | 
| Within-group Covariance Matrices
 | 
gcov
 | 
 Input
 int
 
 | 
 0
 | 
 Specify whether (1) or not (0) to output within-group covariance matrices for training data.
 | 
| Discriminant Function Coefficients
 | 
dcoeff
 | 
 Input
 int
 
 | 
 0
 | 
 Specify whether (1) or not (0) to calculate discriminant function coefficients including constant and linear coefficients. This option is enabled only when method is Linear.
 | 
| Canonical Structure Matrix
 | 
cstruct
 | 
 Input
 int
 
 | 
 0
 | 
 Specify whether (1) or not (0) to calculate the canonical structure matrix in Canonical Discriminant Analysis.
 | 
| Canonical Coefficients
 | 
ccoeff
 | 
 Input
 int
 
 | 
 0
 | 
 Specify whether (1) or not (0) to calculate canonical coefficients in Canonical Discriminant Analysis including unstandardized canonical coefficients and standardized canonical coefficients.
 | 
| Canonical Scores
 | 
cscore
 | 
 Input
 int
 
 | 
 1
 | 
 Specify whether (1) or not (0) to calculate canonical scores and canonical group means in Canonical Discriminant Analysis.
 | 
| Posterior Probabilities
 | 
prob
 | 
 Input
 int
 
 | 
 1
 | 
 Specify whether (1) or not (0) posterior probabilities are included in the classification result for observations of training data and test data in different groups.
 | 
| Squared Mahalanobis Distance
 | 
dist
 | 
 Input
 int
 
 | 
 0
 | 
 Specify whether (1) or not (0) squared Mahalanobis distance is included in the classification result for observations of training data and test data in different groups.
 | 
| Atypicality Index
 | 
ai
 | 
 Input
 int
 
 | 
 0
 | 
 Specify whether (1) or not (0) atypicality index is included in the classification result for observations of training data and test data in different groups.
 | 
| Classification Summary
 | 
cstat
 | 
 Input
 int
 
 | 
 1
 | 
 Specify whether (1) or not (0) to summarize the classification result including observation count in each predicted group, error rate for training data and cross validation of training data.
 | 
| Classification Summary Plot
 | 
cplot
 | 
 Input
 int
 
 | 
 0
 | 
 Specify whether (1) or not (0) to show Classification Summary Plot in the report, which shows the source of predicted group members.
 | 
| Classification Fit Plot
 | 
fplot
 | 
 Input
 int
 
 | 
 0
 | 
 Specify whether (1) or not (0) to show Classification Fit Plot in the report, which shows the posterior probabilities of observations for the predicted group.
 | 
| Canonical Score Plot
 | 
splot
 | 
 Input
 int
 
 | 
 1
 | 
 Specify whether (1) or not (0) to show Canonical Score Plot in the report, which shows scores of observations in the first two canonical variables.
 | 
| Discriminant Analysis Report
 | 
rt
 | 
 Output
 ReportTree
 
 | 
 <new>
 | 
 Specify the sheet for the discriminant analysis report.
 | 
| Classification Result for Training Data
 | 
rdtrain
 | 
 Output
 ReportData
 
 | 
 <new>
 | 
 Specify the sheet for the classification result of training data.
 | 
| Classification Result for Test Data
 | 
rdtest
 | 
 Output
 ReportData
 
 | 
 <new>
 | 
 Specify the sheet for the classification result of test data.
 | 
| Canonical Scores
 | 
rdscore
 | 
 Output
 ReportData
 
 | 
 <new>
 | 
 Specify the sheet for canonical scores.
 | 
| Plot Data
 | 
rdplot
 | 
 Output
 ReportData
 
 | 
 <new>
 | 
 Specify the sheet for plot data. This variable is hidden in the dialog.
 |