Perform discriminant analysis and canonical discriminant analysis.
This feature is for OriginPro only. 
| Display Name
 | Variable Name
 | I/O and
 Type
 | Default Value
 | Description | 
| Group for Training Data | group | Input
 Range
 |  | Select data from a column to specify group for training data. | 
| Training Data | var | Input
 Range
 | <active> | Select data to specify training data. Note that beginning with Origin 2020b, there is a shortened syntax that follows the form [Book]Sheet!(N1:N2), N1 = the beginning column index and N2 being the ending column index in a contiguous range of columns. More complex strings from non-contiguous data of the form [Book]Sheet!([Book]Sheet!N1:N2,[Book]Sheet!N3:N4) are also possible. | 
| Predict Membership for Test Data | test | Input
 int
 | 0 | Determine whether to predict membership for test data. If checked (1), pvar is available. | 
| Test Data | pvar | Input
 Range
 |  | Select data to specify test data. | 
| Prior Probabilities | prior | Input
 int
 | 0 | Select the type of prior probabilities for each group. Option list:
 Equal
 Prior probabilities are equal for all groups.
Proportional to group size
 Prior probability for a group is proportional to the number of observations in the group.
 | 
| Discriminant Function | method | Input
 int
 | 0 | Select the method to classify. Option list:
 Linear
 Using Linear Discriminant Function. The pooled within-group covariance matrix is used to calculate Mahalanobis distance. 
Quadratic
 Using Quadratic Discriminant Function. Within-group covariance matrices are used to calculate Mahalanobis distance. 
 For more details, see the algorithm of discriminant functions. 
 | 
| Canonical Discriminant Analysis | candisc | Input
 int
 | 1 | Specify whether (1) or not (0) to perform Canonical Discriminant Analysis. | 
| Cross Validation | cv | Input
 int
 | 0 | Specify whether (1) or not (0) to classify training data using Cross Validation method. | 
| Descriptive Statistics | stat | Input
 int
 | 1 | Specify whether (1) or not (0) to perform Descriptive Statistics on training data including means, standard deviations for each variable in each group and total. | 
| Descriptive Matrices | dmat | Input
 int
 | 0 | Specify whether (1) or not (0) to calculate covariance matrix, correlation matrix and group distance(squared Mahalanobis) matrices of training data. | 
| Univariate ANOVA | anova | Input
 int
 | 0 | Specify whether (1) or not (0) to perform Univariate ANOVA on training data to test the difference in group means for each variable. | 
| Equality Test of Covariance Matrices | equal | Input
 int
 | 0 | Specify whether (1) or not (0) to perform Equality Test of Covariance Matrices on training data to test the equality of within-group covariance matrices. | 
| Pooled Within-group Covariance/Correlation Matrix | pcov | Input
 int
 | 0 | Specify whether (1) or not (0) to output pooled within-group covariance matrix and correlation matrix for training data. | 
| Within-group Covariance Matrices | gcov | Input
 int
 | 0 | Specify whether (1) or not (0) to output within-group covariance matrices for training data. | 
| Discriminant Function Coefficients | dcoeff | Input
 int
 | 0 | Specify whether (1) or not (0) to calculate discriminant function coefficients including constant and linear coefficients. This option is enabled only when method is Linear. | 
| Canonical Structure Matrix | cstruct | Input
 int
 | 0 | Specify whether (1) or not (0) to calculate the canonical structure matrix in Canonical Discriminant Analysis. | 
| Canonical Coefficients | ccoeff | Input
 int
 | 0 | Specify whether (1) or not (0) to calculate canonical coefficients in Canonical Discriminant Analysis including unstandardized canonical coefficients and standardized canonical coefficients. | 
| Canonical Scores | cscore | Input
 int
 | 1 | Specify whether (1) or not (0) to calculate canonical scores and canonical group means in Canonical Discriminant Analysis. | 
| Posterior Probabilities | prob | Input
 int
 | 1 | Specify whether (1) or not (0) posterior probabilities are included in the classification result for observations of training data and test data in different groups. | 
| Squared Mahalanobis Distance | dist | Input
 int
 | 0 | Specify whether (1) or not (0) squared Mahalanobis distance is included in the classification result for observations of training data and test data in different groups. | 
| Atypicality Index | ai | Input
 int
 | 0 | Specify whether (1) or not (0) atypicality index is included in the classification result for observations of training data and test data in different groups. | 
| Classification Summary | cstat | Input
 int
 | 1 | Specify whether (1) or not (0) to summarize the classification result including observation count in each predicted group, error rate for training data and cross validation of training data. | 
| Classification Summary Plot | cplot | Input
 int
 | 0 | Specify whether (1) or not (0) to show Classification Summary Plot in the report, which shows the source of predicted group members. | 
| Classification Fit Plot | fplot | Input
 int
 | 0 | Specify whether (1) or not (0) to show Classification Fit Plot in the report, which shows the posterior probabilities of observations for the predicted group. | 
| Canonical Score Plot | splot | Input
 int
 | 1 | Specify whether (1) or not (0) to show Canonical Score Plot in the report, which shows scores of observations in the first two canonical variables. | 
| Discriminant Analysis Report | rt | Output
 ReportTree
 | <new> | Specify the sheet for the discriminant analysis report. | 
| Classification Result for Training Data | rdtrain | Output
 ReportData
 | <new> | Specify the sheet for the classification result of training data. | 
| Classification Result for Test Data | rdtest | Output
 ReportData
 | <new> | Specify the sheet for the classification result of test data. | 
| Canonical Scores | rdscore | Output
 ReportData
 | <new> | Specify the sheet for canonical scores. | 
| Plot Data | rdplot | Output
 ReportData
 | <new> | Specify the sheet for plot data. This variable is hidden in the dialog. |