3.7.5.57 StatStat-obj
LabTalk Object Type:
- External Object
The stat object provides for the following operations:
- Linear regression.
- Polynomial regression.
- Multiple regression.
- Descriptive statistics.
Properties:
Common Stat Object Properties:
Property
|
Access
|
Description
|
stat.adrsq
|
Read only numeric
|
Adjust Coefficient of Determination (R squared).
|
stat.chiSqrErr
|
Read/write numeric
|
Multiply the error on the parameters with the reduced chi-square value. 1 = enable, 0 = disable.
|
stat.cod
|
Read only numeric
|
Coefficient of Determination (R squared).
|
stat.confLevel
|
Read/write numeric
|
Confidence level for calculating confidence and prediction limits.
|
stat.errBarData$
|
Read/write string
|
Name of the error bar column to be used for calculating weights.
|
stat.fitxData$
|
Read/write string
|
Name of the X column to be fitted.
|
stat.fityData$
|
Read/write string
|
Name of the Y column to be fitted.
|
stat.fValue
|
Read only numeric
|
F test value (MSR/MSE).
|
stat.lclData$
|
Read/write string
|
Name of the lower control line.
|
stat.lplData$
|
Read/write string
|
Name of the lower prediction line.
|
stat.makeX.fitnpts
|
Read/write numeric
|
Number of points for the fitted curve.
|
stat.makeX.fitX1
|
Read/write numeric
|
First X value to be used when making the FitX$ dataset with the MakeX() method.
|
stat.makeX.fitX2
|
Read/write numeric
|
Last X value to be used when making the FitX$ dataset with the MakeX() method.
|
stat.makeX.margin
|
Read/write numeric
|
Percent of the raw data's range, of which to extend the fit X dataset beyond.
|
stat.MSE
|
Read only numeric
|
Mean sum of squares of residuals.
|
stat.MSR
|
Read only numeric
|
Mean sum of squares due to regression.
|
stat.npts
|
Read only numeric
|
Number of valid data points
|
stat.pvalue
|
Read only numeric
|
P-value for F test.
|
stat.r
|
Read only numeric
|
Correlation coefficient.
|
stat.resData$
|
Read only string
|
Name of the residual column.
|
stat.sd
|
Read only numeric
|
Standard deviation of the fit.
|
stat.SSE
|
Read only numeric
|
Residual sum of squares.
|
stat.SSR
|
Read only numeric
|
Sum of squares due to regression.
|
stat.SSTO
|
Read only numeric
|
Total sum of squares.
|
stat.uclData$
|
Read/write string
|
Name of the upper control line.
|
stat.uplData$
|
Read/write string
|
Name of the upper prediction line.
|
stat.wTotal
|
Read only numeric
|
Total weight.
|
stat.xMean
|
Read only numeric
|
Mean value of the X column.
|
stat.yMean
|
Read only numeric
|
Mean value of the Y column
|
Stat Object Properties Specific to Linear Regression:
Property
|
Access
|
Description
|
stat.lr.a
|
Read only numeric
|
Intercept.
|
stat.lr.ap
|
Read only numeric
|
P-value for the t test of a.
|
stat.lr.ase
|
Read only numeric
|
Standard error of a.
|
stat.lr.b
|
Read only numeric
|
Slope.
|
stat.lr.bp
|
Read only numeric
|
P-value for the t-test of b.
|
stat.lr.bse
|
Read only numeric
|
Standard error of b.
|
stat.lr.t
|
Read only numeric
|
t value corresponding to the
confidence level.
|
Stat Object Properties Specific to Polynomial Regression:
Property
|
Access
|
Description
|
stat.pr.a,
stat.pr.b1, etc.
|
Read only numeric
|
Fitted parameters (a is the
intercept).
|
stat.pr.ap
|
Read only numeric
|
P-value of the t-test for parameter
a.
|
stat.pr.ase, stat.pr.bse1, etc.
|
Read only numeric
|
Standard error of a and b[i].
|
stat.pr.bp1,
stat.pr.bp2, etc.
|
Read only numeric
|
P-values of the t-tests for
parameters bi.
|
stat.pr.order
|
Read/write numeric
|
Order of the polynomial.
|
stat.pr.t
|
Read only numeric
|
t value according to the confidence
level.
|
Stat Object Properties Specific to Multiple Regression:
Property
|
Access
|
Description
|
stat.mr.a
|
Read only numeric
|
Intercept.
|
stat.mr.ap
|
Read only numeric
|
P-value of t-test for parameter
a.
|
stat.mr.ase
|
Read only numeric
|
Intercept's error
|
stat.mr.bestr2wks$
|
Internal use only
|
Not implemented in Origin.
|
stat.mr.bi
|
Read only numeric
|
Fitting parameters (i = 1 .. 9).
|
stat.mr.bpi
|
Read only numeric
|
P-values of t-test for
parameters bi (i = 1 ..9).
|
stat.mr.bsei
|
Read only numeric
|
b[i]'s errors (i = 1 .. 9).
|
stat.mr.NumX
|
Read only numeric
|
The total number of X columns.
|
stat.mr.pIn
|
Read only numeric
|
Critical P-value to enter a
variable in stepwise regression.
|
stat.mr.pOut
|
Read only numeric
|
Critical P-value to remove a
variable in stepwise regression.
|
stat.mr.t
|
Read only numeric
|
t value according to confidence
level.
|
stat.mr.XDatai$
|
Read/write string
|
X column names (i = 1 ..9).
|
stat.mr.YData$
|
Read/write string
|
Y column name
|
Stat Object Properties Specific to Descriptive Statistics:
Property
|
Access
|
Description
|
stat.DS.ad
|
--
|
Not currently implemented.
|
stat.DS.CIL
|
Read only numeric
|
Lower confidence limit about the mean (the percentage is set with stat.ds.confLev).
|
stat.DS.CIU
|
Read only numeric
|
Upper confidence limit about the mean (the percentage is set with stat.ds.confLev).
|
stat.DS.cName1$
|
--
|
Not currently implemented.
|
stat.DS.confLev
|
Read/write numeric
|
Confidence level (set to 0.95 by default). Set this property to load stat.ds.ciu and stat.ds.cil.
|
stat.DS.data$
|
Read/write string
|
Name of dataset used to calculate descriptive statistics.
|
stat.DS.geoMean
|
|
Not currently implemented.
|
stat.DS.interpolate
|
Read/write numeric
|
Use interpolation when finding the quartiles/percentiles. 1 = enable, 0 = disable.
|
stat.DS.kurt
|
Read only numeric
|
Kurtosis of the data. Kurtosis measures the long-tailedness or peakedness of the distribution of a random variable relative to the normal or Gaussian distribution with the same mean and variance.
|
stat.DS.max
|
Read only numeric
|
Maximum of the data.
|
stat.DS.mean
|
Read only numeric
|
Mean value of the data.
|
stat.DS.medCIL
|
--
|
Not currently implemented. Lower confidence limit about the median.
|
stat.DS.medCIU
|
--
|
Not currently implemented. Lower confidence limit about the median.
|
stat.DS.median
|
Read only numeric.
|
Median of the data.
|
stat.DS.min
|
Read only numeric
|
Minimum of the data.
|
stat.DS.missing
|
Read only numeric
|
Number of missing values in the dataset.
|
stat.DS.more
|
Read/write numeric
|
Perform advanced statistics. 1 = enable, 0 = disable.
|
stat.DS.percent
|
Read/write numeric
|
The percentile to calculate when stat.ds() is performed. The percentile is loaded into stat.ds.percentile.
|
stat.DS.percentile
|
Read only numeric
|
Percentiles of the data.
|
stat.DS.quart75
|
Read only numeric
|
The upper quartile (75th percentile).
|
stat.DS.quartl25
|
Read only numeric
|
The lower quartile (25th percentile).
|
stat.DS.quartl50
|
Read only numeric
|
The second quartile (50th percentile).
|
stat.DS.range
|
Read only numeric
|
Range of the data.
|
stat.DS.sd
|
Read only numeric
|
Standard deviation.
|
stat.DS.se
|
Read only numeric
|
Standard error of the mean.
|
stat.DS.size
|
Read only numeric
|
Number of data points in the dataset.
|
stat.DS.skew
|
Read only numeric
|
Skewness of the data.
|
stat.DS.ssq
|
Read only numeric
|
Sum of squares
|
stat.DS.sum
|
Read only numeric
|
Sum of the data.
|
stat.DS.testNorm
|
--
|
Not currently implemented.
|
stat.DS.var
|
Read only numeric
|
Sample variance.
|
Methods:
Common Stat Object Methods:
Method
|
Description
|
stat.makeX()
|
Make an X dataset in fitX$ that
spans from FitX1 to FitX2.
|
stat.name(CtrlBit, WksName_ColName, NewColNam1[, NewColNam2, ..., NewColNamn])
|
CtrlBit is either 1 or 0.
When CtrlBit = 1, concatenate
WksName_ColName to
WksNameColName. This becomes
the name of the new worksheet.
Scan for already existing datasets:
WksNameColName_NewColNam1,
WksNameColName_NewColNam2,
..WksNameColName_NewColNamn.
If a dataset already exists, then
generate a new worksheet name
(WksNameColNamen, where n = 1,
2, etc.) and scan again. When no
duplicate names are found, set
stat.name.worksheet$ to
WksNameColName or
WksNameColNamen.
When CtrlBit = 0, concatenate
WksName_ColName to
WksNameColName. Do not search
for previously existing datasets with
identical names. Set
stat.name.worksheet$ to
WksNameColName.
|
stat.reset()
|
Reset all parameter values to their
initial, unassigned values.
|
Stat Object Methods Specific to Linear Regression:
Method
|
Description
|
stat.lr([z])
|
Linear regression for given datasets. When "z" is specified, the fitting line goes through the origin.
For example :
stat.data$ = %H_B;
stat.errbardata$ = %H_C;
stat.lr();
stat.lr.a = ;
//Display intercept in Script window
stat.lr.b = ;
//Display slope in Script
window
|
Stat Object Methods Specific to Polynomial Regression:
Method
|
Description
|
stat.pr()
|
Polynomial regression for given datasets.
For example:
stat.data$ = %H_B;
stat.fitxdata$ = %H_D; //(optional)
stat.fitydata$ = %H_E; //(optional)
stat.pr();
|
Stat Object Methods Specific to Multiple Regression:
Method
|
Description
|
stat.mr()
|
Multiple regression for the given datasets.
stat.mr();
|
Stat Object Methods Specific to Descriptive Statistics:
Method
|
Description
|
stat.DS()
|
Descriptive and basic statistics for given dataset.
|
Examples:
This script performs a second order polynomial regression. It assumes that a Data1 worksheet is active and contains four columns: an X column with data, a Y column named B with data, an empty column named fitx, and an empty column named fity.
- First create a script file containing the following script and save this file as PolyNom.OGS to your Origin software folder:
//Performs polynomial regression
//%1 = order
//%2 = name of dataset to fit (y variable)
//%3 = name of dataset to store fitted x data
//%4 = name of dataset to store fitted y data
//%5 = number of points to create fitted curve
[main]
stat.reset(); //Reset the DLL
stat.pr.order = %1; //order
stat.data$ = %2; //dataset to fit
stat.fitxdata$ = %3; //dataset to store fitted x values
stat.fitYdata$ = %4; //dataset to store fitted y values
stat.makeX.fitnpts = %5; //number of points of regression curve
limit %2; //finds limiting values for the dataset to fit
stat.makex.fitx1 = limit.xmin;
stat.makex.fitx2 = limit.xmax;
stat.makex();
stat.PR();
- Then execute the following script to run the script file and perform the polynomial regression:
run.section(polynom.ogs, main, 2
data1_b data1_fitx data1_fity
100);
|