Stat
Stat-obj
LabTalk Object Type:
- External Object
The stat object provides for the following operations:
- Linear regression.
- Polynomial regression.
- Multiple regression.
- Descriptive statistics.
Properties:
Common Stat Object Properties:
Property |
Access |
Description |
stat.adrsq |
Read only
numeric |
Adjust Coefficient of Determination (R squared).
|
stat.chiSqrErr |
Read/write
numeric |
Multiply the error on the parameters with the reduced chi-square value. 1 = enable, 0 = disable.
|
stat.cod |
Read only
numeric |
Coefficient of Determination (R squared).
|
stat.confLevel |
Read/write
numeric |
Confidence level for calculating confidence and prediction limits.
|
stat.errBarData$ |
Read/write
string |
Name of the error bar column to be used for calculating weights.
|
stat.fitxData$ |
Read/write
string |
Name of the X column to be fitted.
|
stat.fityData$ |
Read/write
string |
Name of the Y column to be fitted.
|
stat.fValue |
Read only
numeric |
F test value (MSR/MSE).
|
stat.lclData$ |
Read/write
string |
Name of the lower control line.
|
stat.lplData$ |
Read/write
string |
Name of the lower prediction line.
|
stat.makeX.fitnpts |
Read/write
numeric |
Number of points for the fitted curve.
|
stat.makeX.fitX1 |
Read/write
numeric |
First X value to be used when making the FitX$ dataset with the MakeX() method.
|
stat.makeX.fitX2 |
Read/write
numeric |
Last X value to be used when making the FitX$ dataset with the MakeX() method.
|
stat.makeX.margin |
Read/write
numeric |
Percent of the raw data's range, of which to extend the fit X dataset beyond.
|
stat.MSE |
Read only
numeric |
Mean sum of squares of residuals.
|
stat.MSR |
Read only
numeric |
Mean sum of squares due to regression.
|
stat.npts |
Read only
numeric |
Number of valid data points
|
stat.pvalue |
Read only
numeric |
P-value for F test.
|
stat.r |
Read only
numeric |
Correlation coefficient.
|
stat.resData$ |
Read only
string |
Name of the residual column.
|
stat.sd |
Read only
numeric |
Standard deviation of the fit.
|
stat.SSE |
Read only
numeric |
Residual sum of squares.
|
stat.SSR |
Read only
numeric |
Sum of squares due to regression.
|
stat.SSTO |
Read only
numeric |
Total sum of squares.
|
stat.uclData$ |
Read/write
string |
Name of the upper control line.
|
stat.uplData$ |
Read/write
string |
Name of the upper prediction line.
|
stat.wTotal |
Read only
numeric |
Total weight.
|
stat.xMean |
Read only
numeric |
Mean value of the X column.
|
stat.yMean |
Read only
numeric |
Mean value of the Y column
|
Stat Object Properties Specific to Linear Regression:
Property |
Access |
Description |
stat.lr.a |
Read only
numeric |
Intercept.
|
stat.lr.ap |
Read only
numeric |
P-value for the t test of a.
|
stat.lr.ase |
Read only
numeric |
Standard error of a.
|
stat.lr.b |
Read only
numeric |
Slope.
|
stat.lr.bp |
Read only
numeric |
P-value for the t-test of b.
|
stat.lr.bse |
Read only
numeric |
Standard error of b.
|
stat.lr.t |
Read only
numeric |
t value corresponding to the confidence level.
|
Stat Object Properties Specific to Polynomial Regression:
Property |
Access |
Description |
stat.pr.a,
stat.pr.b1, etc.
|
Read only
numeric |
Fitted parameters (a is the intercept).
|
stat.pr.ap |
Read only
numeric |
P-value of the t-test for parameter a.
|
stat.pr.ase,
stat.pr.bse1, etc. |
Read only
numeric |
Standard error of a and b[i].
|
stat.pr.bp1,
stat.pr.bp2, etc.
|
Read only
numeric |
P-values of the t-tests for parameters bi.
|
stat.pr.order |
Read/write
numeric |
Order of the polynomial.
|
stat.pr.t |
Read only
numeric |
t value according to the confidence level.
|
Stat Object Properties Specific to Multiple Regression:
Property |
Access |
Description |
stat.mr.a |
Read only
numeric |
Intercept.
|
stat.mr.ap |
Read only
numeric |
P-value of t-test for parameter a.
|
stat.mr.ase |
Read only
numeric |
Intercept's error
|
stat.mr.bestr2wks$ |
Internal use only |
Not implemented in Origin.
|
stat.mr.bi |
Read only
numeric |
Fitting parameters (i = 1 .. 9).
|
stat.mr.bpi |
Read only
numeric |
P-values of t-test for parameters bi (i = 1 ..9).
|
stat.mr.bsei |
Read only
numeric |
b[i]'s errors (i = 1 .. 9).
|
stat.mr.NumX |
Read only
numeric |
The total number of X columns.
|
stat.mr.pIn |
Read only
numeric |
Critical P-value to enter a variable in stepwise regression.
|
stat.mr.pOut |
Read only
numeric |
Critical P-value to remove a variable in stepwise regression.
|
stat.mr.t |
Read only
numeric |
t value according to confidence level.
|
stat.mr.XDatai$ |
Read/write
string |
X column names (i = 1 ..9).
|
stat.mr.YData$ |
Read/write
string |
Y column name
|
Stat Object Properties Specific to Descriptive Statistics:
Property |
Access |
Description |
stat.DS.ad |
-- |
Not currently implemented.
|
stat.DS.CIL |
Read only
numeric |
Lower confidence limit about the mean (the percentage is set with stat.ds.confLev).
|
stat.DS.CIU |
Read only
numeric |
Upper confidence limit about the mean (the percentage is set with stat.ds.confLev).
|
stat.DS.cName1$ |
-- |
Not currently implemented.
|
stat.DS.confLev |
Read/write
numeric |
Confidence level (set to 0.95 by default). Set this property to load stat.ds.ciu and stat.ds.cil.
|
stat.DS.data$ |
Read/write
string |
Name of dataset used to calculate descriptive statistics.
|
stat.DS.geoMean |
|
Not currently implemented.
|
stat.DS.interpolate |
Read/write
numeric |
Use interpolation when finding the quartiles/percentiles. 1 = enable, 0 = disable.
|
stat.DS.kurt |
Read only
numeric |
Kurtosis of the data. Kurtosis measures the long-tailedness or peakedness of the distribution of a random variable relative to the normal or Gaussian distribution with the same mean and variance.
|
stat.DS.max |
Read only
numeric |
Maximum of the data.
|
stat.DS.mean |
Read only
numeric |
Mean value of the data.
|
stat.DS.medCIL |
-- |
Not currently implemented. Lower confidence limit about the median.
|
stat.DS.medCIU |
-- |
Not currently implemented. Lower confidence limit about the median.
|
stat.DS.median |
Read only
numeric. |
Median of the data.
|
stat.DS.min |
Read only
numeric |
Minimum of the data.
|
stat.DS.missing |
Read only
numeric |
Number of missing values in the dataset.
|
stat.DS.more |
Read/write
numeric |
Perform advanced statistics. 1 = enable, 0 = disable.
|
stat.DS.percent |
Read/write
numeric |
The percentile to calculate when stat.ds() is performed. The percentile is loaded into stat.ds.percentile.
|
stat.DS.percentile |
Read only
numeric |
Percentiles of the data.
|
stat.DS.quart75 |
Read only
numeric |
The upper quartile (75th percentile).
|
stat.DS.quartl25 |
Read only
numeric |
The lower quartile (25th percentile).
|
stat.DS.quartl50 |
Read only
numeric |
The second quartile (50th percentile).
|
stat.DS.range |
Read only
numeric |
Range of the data.
|
stat.DS.sd |
Read only
numeric |
Standard deviation.
|
stat.DS.se |
Read only
numeric |
Standard error of the mean.
|
stat.DS.size |
Read only
numeric |
Number of data points in the dataset.
|
stat.DS.skew |
Read only
numeric |
Skewness of the data.
|
stat.DS.ssq |
Read only
numeric |
Sum of squares
|
stat.DS.sum |
Read only
numeric |
Sum of the data.
|
stat.DS.testNorm |
-- |
Not currently implemented.
|
stat.DS.var |
Read only
numeric |
Sample variance.
|
Methods:
Common Stat Object Methods:
Method |
Description |
stat.makeX() |
Make an X dataset in fitX$ that spans from FitX1 to FitX2.
|
stat.name(CtrlBit, WksName_ColName, NewColNam1[, NewColNam2, ..., NewColNamn]) |
CtrlBit is either 1 or 0. When CtrlBit = 1, concatenate WksName_ColName to WksNameColName. This becomes the name of the new worksheet. Scan for already existing datasets: WksNameColName_NewColNam1, WksNameColName_NewColNam2, ..WksNameColName_NewColNamn. If a dataset already exists, then generate a new worksheet name (WksNameColNamen, where n = 1, 2, etc.) and scan again. When no duplicate names are found, set stat.name.worksheet$ to WksNameColName or WksNameColNamen. When CtrlBit = 0, concatenate WksName_ColName to WksNameColName. Do not search for previously existing datasets with identical names. Set stat.name.worksheet$ to WksNameColName.
|
stat.reset() |
Reset all parameter values to their initial, unassigned values.
|
Stat Object Methods Specific to Linear Regression:
Method |
Description |
stat.lr([z]) |
Linear regression for given datasets. When "z" is specified, the fitting line goes through the origin.
For example :
stat.data$ = %H_B;
stat.errbardata$ = %H_C;
stat.lr();
stat.lr.a = ;
//Display intercept in Script window
stat.lr.b = ;
//Display slope in Script
window
|
Stat Object Methods Specific to Polynomial Regression:
Method |
Description |
stat.pr() |
Polynomial regression for given datasets. For example:
stat.data$ = %H_B;
stat.fitxdata$ = %H_D; //(optional)
stat.fitydata$ = %H_E; //(optional)
stat.pr();
|
Stat Object Methods Specific to Multiple Regression:
Method |
Description |
stat.mr() |
Multiple regression for the given datasets.
stat.mr();
|
Stat Object Methods Specific to Descriptive Statistics:
Method |
Description |
stat.DS() |
Descriptive and basic statistics for given dataset.
|
Examples:
This script performs a second order polynomial regression. It assumes that a Data1 worksheet is active and contains four columns: an X column with data, a Y column named B with data, an empty column named fitx, and an empty column named fity.
- First create a script file containing the following script and save this file as PolyNom.OGS to your Origin software folder:
//Performs polynomial regression
//%1 = order
//%2 = name of dataset to fit (y variable)
//%3 = name of dataset to store fitted x data
//%4 = name of dataset to store fitted y data
//%5 = number of points to create fitted curve
[main]
stat.reset(); //Reset the DLL
stat.pr.order = %1; //order
stat.data$ = %2; //dataset to fit
stat.fitxdata$ = %3; //dataset to store fitted x values
stat.fitYdata$ = %4; //dataset to store fitted y values
stat.makeX.fitnpts = %5; //number of points of regression curve
limit %2; //finds limiting values for the dataset to fit
stat.makex.fitx1 = limit.xmin;
stat.makex.fitx2 = limit.xmax;
stat.makex();
stat.PR();
- Then execute the following script to run the script file and perform the polynomial regression:
run.section(polynom.ogs, main, 2
data1_b data1_fitx data1_fity
100);
|