

Origin C Programming Guide

Copyright © 2016 by OriginLab Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form
or by any means without the written permission of OriginLab Corporation.

OriginLab, Origin, and LabTalk are either registered trademarks or trademarks of OriginLab
Corporation. Other product and company names mentioned herein may be the trademarks of their
respective owners.

OriginLab Corporation
One Roundhouse Plaza
Northampton, MA 01060
USA
(413) 586-2013
(800) 969-7720
Fax (413) 585-0126
www.OriginLab.com

iii

Table of Contents
Table of Contents ...iii
1 Basic Features .. 1

1.1 Hello World Tutorial ... 1

2 Language Fundamentals ... 5
2.1 Language Fundamentals .. 5
2.2 Data Types and Variables ... 5
2.3 Operators .. 7
2.4 Statement Flow Control ... 10
2.5 Functions ... 13
2.6 Classes .. 14
2.7 Error and Exception Handling ... 15

3 Predefined Classes ...17
3.1 Predefined Classes ... 17
3.2 Analysis Class ... 17
3.3 Application Communication Class .. 18
3.4 Composite Data Types Class .. 18
3.5 Internal Origin Objects Class .. 20
3.6 System Class .. 27
3.7 User Interface Controls Class ... 28
3.8 Utility Class .. 30

4 Creating and Using Origin C Code ...33
4.1 Creating and Using Origin C Code ... 33
4.2 Create and Edit an Origin C File ... 33
4.3 Compiling, Linking and Loading .. 39
4.4 Debugging ... 43
4.5 Using Compiled Functions .. 43
4.6 Distributing Origin C Code .. 47

5 Matrix Books Matrix Sheets and Matrix Objects ...51
5.1 Matrix Books Matrix Sheets and Matrix Objects ... 51
5.2 Base Matrix Book Operation ... 51
5.3 Matrix Sheets .. 54
5.4 Matrix Objects ... 61

6 Workbooks Worksheets and Worksheet Columns ...69
6.1 Workbooks Worksheets and Worksheet Columns.. 69
6.2 Workbooks .. 69
6.3 Worksheet Columns .. 73
6.4 Worksheets ... 79

7 Graphs ...99
7.1 Graphs ... 99
7.2 Creating and Customizing Graph .. 100
7.3 Adding Data Plots ... 104
7.4 Customizing Data Plots ... 108
7.5 Managing Layers ... 116
7.6 Creating and Accessing Graphical Objects .. 120

8 Working with Data ... 125
8.1 Working with Data ... 125
8.2 Numeric Data .. 125
8.3 String Data .. 130
8.4 Date and Time Data .. 132

9 Projects .. 133

Origin C Programming Guide

iv

9.1 Projects ... 133
9.2 Managing Projects .. 133
9.3 Managing Folders ... 134
9.4 Accessing Pages ... 135
9.5 Accessing Metadata .. 136
9.6 Accessing Operations ... 140

10 Importing ... 143
10.1 Importing ... 143
10.2 Importing Data ... 143
10.3 Importing Images .. 147
10.4 Importing Videos ... 149

11 Exporting .. 151
11.1 Exporting ... 151
11.2 Exporting Worksheets ... 151
11.3 Exporting Graphs .. 152
11.4 Exporting Matrices .. 152
11.5 Exporting Videos ... 153

12 Analysis and Applications ... 155
12.1 Analysis and Applications ... 155
12.2 Mathematics .. 155
12.3 Statistics .. 161
12.4 Curve Fitting .. 163
12.5 Signal Processing ... 176
12.6 Peaks and Baseline .. 178
12.7 Using NAG Functions .. 180

13 Output Objects ... 187
13.1 Output Objects .. 187
13.2 Results Log ... 187
13.3 Script Window ... 187
13.4 Notes Window ... 188
13.5 Report Sheet ... 188

14 Accessing Database ... 189
14.1 Accessing Database ... 189
14.2 Importing from a Database .. 189
14.3 Exporting into a Database ... 190
14.4 Accessing SQLite Database ... 191

15 Accessing LabTalk ... 193
15.1 Accessing LabTalk .. 193
15.2 Getting and Setting Values for LabTalk Variables .. 193
15.3 Running LabTalk Script ... 194
15.4 Embedding LabTalk Script in Origin C Code .. 195

16 Accessing X-Function .. 197
16.1 Calling the impFile X-Function From Origin C .. 197

17 User Interface ... 199
17.1 User Interface .. 199
17.2 Dialog .. 199
17.3 Wait Cursors.. 222
17.4 Picking Points from a Graph ... 223
17.5 Adding Controls to a Graph ... 224

18 Accessing External Resources ... 227
18.1 Accessing External Resources ... 227
18.2 Calling Third Party DLL Functions .. 227
18.3 Access an External Application ... 252

Table of Contents

v

19 Reference .. 255
19.1 Reference .. 255
19.2 Class Hierarchy ... 255
19.3 Collections ... 258

1

11 Basic Features

Origin C is a high level programming language closely based on the ANSI C programming language.
In addition, Origin C supports a number of C++ features including classes, mid-stream variable
declarations, overloaded functions, references, and default function arguments. Origin C also
supports collections, and the foreach and using statements from the C# programming language.
Origin C programs are developed in Origin's Integrated Development Environment (IDE) named
Code Builder. Code Builder includes a source code editor with syntax highlighting, a workspace
window, compiler, linker, and a debugger. Refer to Help: Programming: Code Builder for more
information about Code Builder.
Using Origin C allows developers to take full advantage of Origin's data import and handling,
graphing, analysis, image export capabilities, and much more. Applications created with Origin C
execute much faster than those created with Origin's LabTalk scripting language.

1.1 Hello World Tutorial

This tutorial will show you how to use Code Builder to create an Origin C function, and then access
the function from Origin. Though the function itself is very simple, the steps provided here will help
you get started with writing your own Origin C functions.

1. Click the Code Builder button on Origin's Standard toolbar to open Code Builder.

2. In Code Builder, click the New button on Code Builder's Standard toolbar to open the New

File dialog.

Origin C Programming Guide

2

3. Select C File from the list box of the dialog, and then type HelloWorld in the File Name text

box.

4. Click OK and the new file will be opened in Code Builder's Multiple Document Interface (MDI).

5. Copy or type the following Origin C code beneath the line that reads // Start your functions

here.

int test ()

{

 printf("hello, world \ n") ; // Call printf f unction to output our

text

 // \ n represents the newline character

 return 0; // Exit our function, returning zero to the caller

}

6. Click the Build button on Code Builder's Standard toolbar to compile and link the

HelloWorld.C source file. The Output window of Code Builder should display as

Basic Features

3

7. Now you can use this function in Origin. For example, you can call this function in Origin's

Script Window. If the Script Window is not open, select the Window: Script Window menu

item from the Origin menu to open it.

8. Type the function name test in the Script Window and then press the ENTER key to execute

the command. The Origin C function will be executed and hello, world will be displayed in the

Origin C Programming Guide

4

next line.

9. Besides the Script Window, the function can also be called from the LabTalk Console

Window in Code Builder. Select View:LabTalk Console in Code Builder if this console window

is not open.

Once an Origin C file has been successfully compiled and linked, all functions defined
in the file can be called as script commands from anywhere in Origin that supports
LabTalk script during the current Origin session. The function parameters and return
value need to meet certain criteria for the function to be accessible from script and
there are techniques to make such functions always avaliable. To learn more, please
refer to the LabTalk Programming: LabTalk Guide: Calling X-Functions and
Origin C Functions: Origin C Functions chapter of the LabTalk help file. This help
file is accessible from the Help: Programming: LabTalk main menu in Origin.

5

22 Language Fundamentals

2.1 Language Fundamentals

 Origin C is closely based on the ANSI C/C++ programming languages. This means Origin C
supports the same data types, operators, flow control statements, user defined functions, classes and
error and exception handling. The next sections will elaborate on these areas of Origin C.

This section covers the following topics:

¶ Data Types and Variables

¶ Operators

¶ Statement Flow Control

¶ Functions

¶ Classes

¶ Error and Exception Handling

2.2 Data Types and Variables

2.2.1 ANSI C Data Types

Origin C supports all the ANSI C data types: char, short, int, float, double and void. In addition, you
can have an array of, and a pointer to, each of these data types.

char name[50] ; // Declare an array of characters

unsigned char age; // Declare an unsigned 8 - bit integer

unsigned short year; // Declare an unsigned 16 - bit integer

2.2.2 Origin C Composite Data Types

Although the C syntax for declaring an array is supported, Origin C provides string, vector and
matrix classes to simplify working with data types in one or two dimensional arrays. These data types
include char, byte, short, word, int, uint, complex. A vector can be of type string for a string array, but
a matrix cannot. A matrix can be of numerical types only.

http://www.originlab.com/doc/OriginC/guide/Data-Types-and-Variables
http://www.originlab.com/doc/OriginC/guide/Operators
http://www.originlab.com/doc/OriginC/guide/Statement-Flow-Control
http://www.originlab.com/doc/OriginC/guide/Functions
http://www.originlab.com/doc/OriginC/guide/Classes
http://www.originlab.com/doc/OriginC/guide/Error-and-Exception-Handling

Origin C Programming Guide

6

string str = "hello, world \ n" ; // Declare and initialize a string

vector <double > vA1 = { 1.5 , 1.8 , 1.1 } ; // Declare and initialize doubles

vector vA2 = { 2.5 , 2.8 , 2.1 , 2.4 } ;

vector <string > vs (3) ; // Declare a string array

vs [0] = "This " ; // Assign string to each string

array item

vs [1] = "is " ;

vs [2] = "test" ;

matrix <int > mA1; // Declare a matrix of integer s

matrix mA2; // Declare a matrix of doubles

// NOTE: The double data type is implied when a data type is not

// specified in the declaration of vector and matrix variables.

Another useful class provided by Origin C is the complex class. The complex class supports numeric
data containing both a real and an imaginary component.

complex cc (4.5 , 7.8) ; // Declare a complex value.

 // The real component is set to 4.5 and

 // the imaginary component is set to 7.8

out_complex ("value = " , cc) ; // Output the complex value

2.2.3 Color

Colors in Origin C are represented with a DWORD value. These values can be an index into Origin's
internal color palette or an actual color composed of red, green, and blue components.

2.2.3.1 Palette Index

Origin's internal Palette contains 24 colors. An index into Origin's internal color palette is a zero
based value from 0 to 23. Origin C provides named constants for each of these colors. Each name
begins with the prefix SYSCOLOR_ followed by the name of the color. The following table lists the 24
color names and their indices.

Index Name Index Name

0 SYSCOLOR_BLACK 12 SYSCOLOR_DKCYAN

1 SYSCOLOR_RED 13 SYSCOLOR_ROYAL

2 SYSCOLOR_GREEN 14 SYSCOLOR_ORANGE

3 SYSCOLOR_BLUE 15 SYSCOLOR_VIOLET

4 SYSCOLOR_CYAN 16 SYSCOLOR_PINK

5 SYSCOLOR_MAGENTA 17 SYSCOLOR_WHITE

6 SYSCOLOR_YELLOW 18 SYSCOLOR_LTGRAY

7 SYSCOLOR_DKYELLOW 19 SYSCOLOR_GRAY

 Language Fundamentals

7

8 SYSCOLOR_NAVY 20 SYSCOLOR_LTYELLOW

9 SYSCOLOR_PURPLE 21 SYSCOLOR_LTCYAN

10 SYSCOLOR_WINE 22 SYSCOLOR_LTMAGENTA

11 SYSCOLOR_OLIVE 23 SYSCOLOR_DKGRAY

DWORD dwColor = SYSCOLOR_ORANGE;

2.2.3.2 Auto Color

There is a special color index referred to as Auto. When this index is used the element will be
colored using the same color as its parent. Not all elements support the Auto index. See Origin's
graphical user interface for the element to determine if the Auto index is supported.
The INDEX_COLOR_AUTOMATIC macro is used when the Auto index value is needed.

DWORD dwColor = INDEX_COLOR_AUTOMATIC;

2.2.3.3 RGB

An Origin color value can also represent an RGB value. RGB values are made up of 8-bit red, green,
and blue components. These values can easily be made using the RGB macro}.
DWORD brown = RGB(139,69,19); // saddle brown
The values returned from the RGB macro cannot be directly used as Origin color values. You will
need to use the RGB2OCOLOR macro to convert the RGB values to Origin color values.
DWORD brown = RGB2OCOLOR(RGB(139,69,19)); // saddle brown
If you ever need to know whether an Origin color value represents an RGB value or an index into a
palette then you can use the OCOLOR_IS_RGB macro. This macro returns true if the value
represents an RGB value and returns false otherwise.

if (OCOLOR_IS_RGB(ocolor))

 out_str ("color value represents an RGB color") ;

else

 out_str ("color value represe nts a color index") ;

Once you determine that an Origin color value represents an RGB value, then you can use the
GET_CRF_FROM_RGBOCOLOR macro to extract the RGB value from the Origin color value.

if (OCOLOR_IS_RGB(ocolor))

{

 DWORD rgb = GET_CRF_FROM_RGBOCOLOR(ocolor) ;

 printf("red = %d, green = %d, blue = %d\ n" ,

 GetRValue (rgb) , GetGValue (rgb) , GetBValue (rgb)) ;

}

2.3 Operators

Operators support the same arithmetic, logical, comparative, and bitwise operators as ANSI C. The
following sections list the four types of operators and show their usage.

Origin C Programming Guide

8

2.3.1 Arithmetic Operators

Operator Purpose

* multiplication

/ division

% modulus (remainder)

+ addition

- subtraction

^
exponentiate
See note below.

Note: Origin C, by default, treats the caret character(^) as an exponentiate operator. This is done to
be consistent with LabTalk. ANSI C uses the caret character as the exclusive OR operator. You can
force Origin C to treat the caret character as the exclusive OR operator by using a special pragma
statement before your code.

out_int ("10 raised to the 3rd is " , 10^3) ;

#pragma xor (push, FALSE)

out_int ("10 XOR 3 is " , 10^3) ;

#pragma xor (pop) // set back to the default action of xor

Dividing an integer by another integer will give an integer result by default. Use the pragma statement
below before codes to make Origin C compiler to treat all numeric literals as double type.

out_double ("3/2 is " , 3/ 2) ; // output 1

#pragma numlittype (push, TRUE)

out_double ("3/2 is " , 3/ 2) ; // output 1.5

#pragma numlittype (pop) // set back to the default action of numlittype

The modulus operator calculates the remainder of the left operand divided by the right operand. This
operator can only be applied to integral operands.

out_int ("The remainder of 11 divided by 2 is " , 11 % 2) ;

2.3.2 Comparison Operators

Comparison operators evaluate to true or false with true yielding 1 and false yielding 0.

Operator Purpose

> greater than

>= greater than or equal to

< less than

 Language Fundamentals

9

<= less than or equal to

== equal to

!= not equal to

if (aa >= 0)

 out_str ("aa is greater than or equal to zero") ;

if (12 == aa)

 out_str ("aa is equal to twelve") ;

if (aa < 99)

 out_str ("aa is less than 99") ;

2.3.3 Logical Operators

Logical operators evaluate to true or false with true yielding 1 and false yielding 0. The operands are
evaluated from left to right. Evaluation stops when the entire expression can be determined.

Operator Purpose

! NOT

&& AND

|| OR

Consider the following two examples:

expr1A && expr2

expr1B || expr2

expr2 will not be evaluated if expr1A evaluates to false or expr1B evaluates to true. This behavior is
to the programmer's advantage and allows efficient code to be written. The following demonstrates
the importance of ordering more clearly.

if (NULL ! = ptr && ptr - >dataValue < upperLimit)

 process_data (ptr) ;

In the above example the entire 'if' expression will evaluate to false if ptr is equal to NULL. If ptr is
NULL then it is very important that the dataValue not be compared to the upperLimit because reading
the dataValue member from a NULL pointer can cause an application to end abruptly.

2.3.4 Bitwise Operators

Bitwise operators allow you to test and set individual bits. The operator treats the operands as an
ordered array of bits. The operands of a bitwise operator must be of integral type.

Operator Purpose

~ complement

Origin C Programming Guide

10

<< shift left

>> shift right

& AND

^
exclusive OR (XOR)
See note below.

| inclusive (normal) OR

Note: Origin C, by default, treats the caret character as an exponentiate operator. This is done to be
consistent with LabTalk. ANSI C uses the caret character as the exclusive OR operator. You can
force Origin C to treat the caret character as the exclusive OR operator by using a special pragma
statement before your code.

out_int ("10 raised to the 3rd is " , 10^3) ;

#pragma xor (push, FALSE)

out_int ("10 XOR 3 is " , 10^3) ;

#pragma xor (pop)

2.4 Statement Flow Control

Origin C supports all ANSI C flow control statements including the if, if-else, switch, for, while, do-
while, goto, break and continue statements. In addition, Origin C supports the C# foreach for looping
through a collection of objects.

2.4.1 The if Statement

The if statement is used for testing a condition and then executing a block of statements if the test
results are true. The if-else statement is similar to the if statement except the if-else statement will
execute an alternative block of statements when the test results are false.
The following are examples of if statements in Origin C, using different input types:

bool bb = true ; // boolean type

if (bb)

{

 out_str ("bb is true") ;

}

int nn = 5;

if (nn) // integer type, 0 = false, non - zero = true

{

 out_str ("nn not 0") ;

}

double * pData = NULL;

if (NULL == pData) // check if pointer is NULL

{

 out_str ("Pointer pData is NULL") ;

}

 Language Fundamentals

11

The following is a simple if-else block in Origin C. Note that the if-block and the else-block are
enclosed in separate sets of curly braces, {}.

if (bRet)

{

 out_str ("Valid input") ; // when bRet is true

}

else

{

 out_str ("INVALID input") ; // when bRet is false

}

The curly braces are optional if the block contains only one statement. This means the above code
can also be written without the braces.

if (bRet)

 out_str ("Valid input") ; // when bRet is true

else

 out_str ("INVALID input") ; // when b Ret is false

2.4.2 The switch Statement

The switch statement is used when you need to execute a different block of statements dependent
on a set of mutually exclusive choices.
Cases are executed by ascending integer, starting with the number given in the integer argument to
the switch statement. Note that the break command will exit the switch-block from any of the cases.

switch (nType) // integer type value as condition

{

case 1:

case 2:

 out_str ("Case 1 or 2") ;

 break ;

case 3:

 out_str ("Case 3") ;

 // no break keyword here, so fall through to case 4

case 4:

 out_str ("Case 4") ;

 break ;

default :

 out_str ("Other cases") ;

 break ;

}

2.4.3 The for Statement

The for statement is often used to execute one or more statements a fixed number of times or for
stepping through an array of data wherein each element is referenced by an index.

char str [] = "This is a string" ;

for (int index = 0; index < strlen(str) ; index ++)

Origin C Programming Guide

12

{

 printf("char at %2d is %c\ n" , index, str [index]) ;

}

2.4.4 The while Statement

The while and do-while statements execute a block of statements until a condition has been met.
The while statement tests the condition at the beginning of the loop and the do-while statement tests
the condition at the end of the loop.

int count = 0;

while (count < 10) // execute statements if condition is true

{

 out_int ("count = " , count) ;

 count ++;

}

int count = 0;

do

{

 out_int ("count = " , count) ;

 count ++;

} while (count < 10) ; // execute statements if condition is true

2.4.5 Jump Statements

Jump statements are used to unconditionally jump to another statement within a function. The break,
continue, and goto statements are considered jump statements. The following examples
demonstrate these jump statements.

2.4.5.1 break

for (int index = 0; index < 10; index ++)

{

 if (pow(index, 2) > 10)

 break ; // terminate for loop

 out_int ("index = " , index) ;

}

2.4.5.2 continue

printf("The odd numbers from 1 to 10 are:") ;

for (int index = 1; index <= 10; index ++)

{

 if (mod(index, 2) == 0)

 continue ; // next index

 printf("%d\ n" , index) ;

}

2.4.5.3 goto

 out_str ("Begin") ;

 goto Mark1;

 Language Fundamentals

13

 out_str ("Skipped statement") ;

Mark1 :

 out_str ("First statement after Mark1") ;

2.4.6 The foreach Statement

The foreach statement is used for looping through a collection of objects. The following code loops
through all the pages in the project and outputs their name and type.

foreach (PageBase pg in Project. Pages)

{

 printf("%s is of type %d\ n" , pg. GetName() , pg. GetType()) ;

}

Refer to the Collections section for a list of all the Collection based classes in Origin C.

2.5 Functions

2.5.1 Global Functions

Origin C provides many global functions for performing a variety of tasks. These global functions fall
into twenty-six categories.

1. Basic IO

2. Character and String Manipulation

3. COM

4. Communications

5. Curve

6. Data Conversion

7. Data Range

8. Date Time

9. File IO

10. File Management

11. Fitting

12. Image Processing

13. Import Export

14. Internal Origin Objects

15. LabTalk Interface

http://www.originlab.com/doc/OriginC/guide/Collections

Origin C Programming Guide

14

16. Math Functions

17. Mathematics

18. Matrix Conversion and Gridding

19. Memory Management

20. NAG

21. Signal Processing

22. Spectroscopy

23. Statistics

24. System

25. Tree

26. User Interface

Please refer to the Global Functions section for a complete list of functions with examples.

2.5.2 User-Defined Functions

Origin C supports user-defined functions. A user-defined function allows Origin C programmers to
create functions that accept their choice of arguments and return type. Their function will then operate
on those arguments to achieve their purpose.
The following creates a function named my_function that returns a double value and accepts a
double value as its only argument.

double my_function (double dData)

{

 dData += 10;

 return dData;

}

The following code snippet shows how to call the above function.

double d = 3.3 ; // Declare 'd' as a double value

d = my_function (d) ; // Call the above function

out_double ("d == " , d) ; // Output new value of 'd'

Origin C functions can also be called from LabTalk.

d = 3.3 ; // Assign 3.3 to 'd'

d = my_function (d) ; // Call the above function

d=; // Output new value of 'd'

2.6 Classes

http://www.originlab.com/doc/OriginC/ref/Global-Functions

 Language Fundamentals

15

Origin C supports many built-in classes, but also allows users to create their own.

2.6.1 Origin Defined Classes

Origin C comes with predefined classes for working with Origin's different data types and user
interface objects. These classes will help you quickly write Origin C code to accomplish your tasks.
This section will discuss the base classes to give you an overview of the capabilities these classes
offer. See the next chapter, Predefined Classes, or the Origin C Wiki for more details and examples
of Origin defined classes.

2.6.2 User Defined Classes

Origin C supports user-defined classes. A user-defined class allows Origin C programmers to create
objects of their own type with methods (member functions) and data members.
The following code creates a class named Book with two methods, GetName and SetName.

class Book

{

public :

 string GetName ()

 {

 return m_strName;

 }

 void SetName(LPCSTR lpcszName)

 {

 m_strName = lpcszName;

 }

private :

 string m_strName;

} ;

And below is a simple example using the class and method definitions above to declare an instance
of the Book class, give it a name using SetName, and then output the name using GetName.

void test_class ()

{

 Book OneBook; // Declare a Book object

 // Call public function to Set/Get name for the Book object

 OneBook. SetName("ABC") ;

 out_s tr (OneBook. GetName()) ;

}

The above example is very simple. If you want to know more class features, for example,
constructors and destructors, or virtual methods, please view the EasyLR.c, EasyLR.h and EasyFit.h
files in this zip file, under the \Origin C Examples\Programming Guide\Extending Origin C .

2.7 Error and Exception Handling

 Origin C supports C++ exception handling using the try, catch, and throw statements.

http://www.originlab.com/ftp/Programming_Examples/OriginCExamples.zip

Origin C Programming Guide

16

The try block consists of the try keyword followed by one or more statements enclosed in braces.
Immediately after the try block is the catch handler. Origin C supports only a single catch handler that
accepts an integer argument. After the catch keyword comes one or more statements enclosed in
braces.

try

{

 LPSTR lpdest = NULL; // NULL poi nter on purpose

 strcpy(lpdest, "Test") ; // copy to NULL pointer to cause error

}

catch (int nErr)

{

 out_int ("Error = " , nErr) ;

}

The try-catch works by executing the statements in the try block. If an error occurs, the execution will
jump to the catch block. If no error occurs then the catch block is ignored.
The throw keyword is optional and is used to trigger an error and cause execution to jump to the
catch block.

void TryCatchThrowEx ()

{

 try

 {

 DoSomeWork(4) ; // pass a valid num ber to show success

 DoSomeWork(- 1) ; // pass an invalid number to cause error

 }

 catch (int iErr)

 {

 printf("Error code = %d\ n" , iErr) ;

 }

}

void DoSomeWork(double num)

{

 if (num < 0)

 throw 100 ; // Force error

 i f (0 == num)

 throw 101 ; // Force error

 double result = sqrt(num) / log(num) ;

 printf("sqrt(%f) / log(%f) = %g\ n" , num, num, result) ;

}

17

33 Predefined Classes

3.1 Predefined Classes

In this section, the predefined classes in Origin C will be described. Please see class hierarchy as a
reference for more information about the relationships among Origin C built-in classes.

This section covers the following topics:

¶ Analysis Class

¶ Application Communication Class

¶ Composite Data Types Class

¶ Internal Origin Objects Class

¶ System Class

¶ User Interface Controls Class

¶ Utility Class

3.2 Analysis Class

The following classes are used to perform data analysis. For more details, please refer to the Origin
C: Origin C Reference: Classes: Analysis chapter in the help document of OriginC.

Class Brief Description

NLFitContext
This class provides a method for accessing the information of the fitting
function, as well as the current evaluation state that is generated by
implementing the fitting function in Origin C.

NLFitSession

This class is the higher level Origin class. It wraps the NLFit class with a
friendly interface to aid in implementing the fitting evaluation procedure. It is
the kernel of the NLFit dialog. This class is recommended for coding in
Origin C, because it takes care of all the complexities that arise from the
process of interfacing to Origin.

http://www.originlab.com/doc/OriginC/guide/Class-Hierarchy
http://www.originlab.com/doc/OriginC/guide/Analysis-Class
http://www.originlab.com/doc/OriginC/guide/Application-Communication-Class
http://www.originlab.com/doc/OriginC/guide/Composite-Data-Types-Class
http://www.originlab.com/doc/OriginC/guide/Internal-Origin-Objects-Class
http://www.originlab.com/doc/OriginC/guide/System-Class
http://www.originlab.com/doc/OriginC/guide/User-Interface-Controls-Class
http://www.originlab.com/doc/OriginC/guide/Utility-Class
http://www.originlab.com/doc/OriginC/ref/Analysis
http://www.originlab.com/doc/OriginC/ref/Analysis
http://www.originlab.com/doc/OriginC/ref/NLFitContext
http://www.originlab.com/doc/OriginC/ref/NLFitSession

Origin C Programming Guide

18

3.3 Application Communication Class

 The following classes are used to enable communication between Origin and other applications. For
more details, please refer to the Origin C: Origin C Reference: Classes: Application
Communication chapter in the help document of OriginC.

Class Brief Description

Matlab Used to enable communication between Origin and MATLAB.

3.4 Composite Data Types Class

 The following classes are composite data types classes. For more details, please refer to the Origin
C: Origin C Reference: Classes: Composite Data Types chapter in the help document of OriginC.

Class Brief Description

CategoricalData

A data set of CategoricalData type is an array of integers. This array
is tied to an internal Origin data set of Text type, and will be allocated
and sized dynamically. A data set of this type maps the text values to
categories by referring to indices (1 based offset). The text values of
mapping indices are stored in the data member of CategoricalMap.

CategoricalMap

A data set of CategoricalMap type is an array of text values. This
array will be allocated and sized dynamically, but not tied to any
internal Origin data set. This data set contains a set of unique text
values, which are sorted alpha-numerically and typically referenced
by the elements of the associated object of CategoricalData type.

complex This class is used to handle number data of complex type. It contains
both the Real part and Imaginary part of the complex number.

Curve

This class is derived from the curvebase and vectorbase classes,
whose methods and properties it inherits. An object of Curve type
can be plotted using methods defined in the GraphLayer class easily,
and it is comprised of a Y data set and, typically (but not necessarily),
an associated X data set. For example, a data set plotted against row
numbers will not contain an associated X data set.

curvebase

This class, which is derived from the vectorbase class, from which it
inherits methods and properties, is an abstract base class and is
used to handle the classes of Curve type, polymorphically. So
objects of curvebase type cannot be constructed, and a derived
class, such as Curve, should be used instead.

Dataset

This class is derived from the vector and vectorbase classes, and it
inherits their methods and properties. A Dataset is an array, which is
allocated and sized dynamically. It can be tied or not tied to an
internal Origin data set. By default, the Dataset is of type double, but
it can also be of any basic data type, including char, byte, short,
word, int, uint and complex (but not string). The syntax
Dataset<type> can be used to construct these types of Dataset.

http://www.originlab.com/doc/OriginC/ref/Application-Communication
http://www.originlab.com/doc/OriginC/ref/Application-Communication
http://www.originlab.com/doc/OriginC/ref/Matlab
http://www.originlab.com/doc/OriginC/ref/Composite-Data-Types
http://www.originlab.com/doc/OriginC/ref/Composite-Data-Types
http://www.originlab.com/doc/OriginC/ref/CategoricalData
http://www.originlab.com/doc/OriginC/ref/CategoricalMap
http://www.originlab.com/doc/OriginC/ref/complex
http://www.originlab.com/doc/OriginC/ref/Curve-Class
http://www.originlab.com/doc/OriginC/ref/curvebase
http://www.originlab.com/doc/OriginC/ref/Dataset

 Predefined Classes

19

Matrix

This class is derived from the matrix and matrixbase classes, from
which it inherits methods and properties. A Matrix (upper case M) is a
two-dimensional array, which is allocated and sized dynamically, and
tied to an internal Origin matrix window. The default type of a Matrix
is double, but any basic data type is allowed as well, including char,
byte, short, word, int, uint and complex (but not string). The syntax
Matrix<type> is used to construct these types of Matrix.

This class is used to access the data in the internal Origin matrix,
while the MatrixObject class is used to control the style of the matrix.
That is to say, the relationship between the MatrixObject and Matrix
classes is the same as the one between the Column and Dataset
classes.

The data values displayed in the cells of the Origin matrix
(referenced by a Matrix object) are typically referred to, in the
worksheet, as Z values, whose associated X and Y values are
linearly mapped to the columns and rows of the matrix, respectively.

matrix

This class is derived from the matrixbase class, from which it inherits
methods and properties. A matrix (lower case m) is a two-
dimensional array, which is allocated and sized dynamically, and is
not tied to any internal Origin matrix window, which provides more
flexibility. The default type of a matrix is double, but any basic data
type can be used as well, including char, byte, short, word, int, uint
and complex (but not string). The syntax matrix<type> is used to
construct these types of matrix.

matrixbase

This class is an abstract base class for handling the matrix and
Matrix class types polymorphically. Thus, objects of matrixbase type
cannot be constructed, and objects of its derived classes, such as
matrix and Matrix, should be used instead.

PropertyNode
This class is only used for including the properties of different data
types, such as Bool, int, float, double, string, vector, matrix, and
picture, etc.

string

This class is used to construct a null terminated array of characters,
which is similar to an MFC CString object. A lot of methods for
manipulating strings (text data) are defined in this class. It can also
be used together with the vector class by syntax vector<string> to
define string arrays.

Tree This class is used to save Origin C trees as XML files, as well as to
load XML files to Origin C trees.

TreeNode This class provides several methods for constructing multilevel trees,
traversing trees and accessing the attributes of tree nodes.

TreeNodeCollection This class is used to get a collection of child tree nodes with an
enumerative name prefix.

vectorbase This class is an abstract base class used for handling objects of

http://www.originlab.com/doc/OriginC/ref/Matrix-Class
http://www.originlab.com/doc/OriginC/ref/matrix
http://www.originlab.com/doc/OriginC/ref/matrixbase
http://www.originlab.com/doc/OriginC/ref/PropertyNode
http://www.originlab.com/doc/OriginC/ref/string
http://www.originlab.com/doc/OriginC/ref/Tree-Class
http://www.originlab.com/doc/OriginC/ref/TreeNode
http://www.originlab.com/doc/OriginC/ref/TreeNodeCollection
http://www.originlab.com/doc/OriginC/ref/vectorbase

Origin C Programming Guide

20

vector and Dataset types polymorphically. Thus, objects of this type
cannot be constructed, and objects of its derived classes, such as
vector and Dataset, should be used instead.

vector

This class is derived from the vectorbase class, from which it inherits
methods and properties. A vector is an array, which is allocated and
sized dynamically, and not tied to any internal Origin data set, which
allows for more flexibility. The default type of vector is double, but
other basic data types are also allowed, including char, byte, short,
word, int, uint, complex, and string. The syntax vector<type> can be
used to construct these types of vector.

3.5 Internal Origin Objects Class

The following classes are used to handle Origin objects. For more details, please refer to the Origin
C: Origin C Reference: Classes: Internal Origin Objects chapter in the help document of OriginC.

Class Brief Description

Axis
This class is derived from the OriginObject class, and can be
used to access Origin axes. Origin axes are contained by
layers on an Origin page.

AxisObject

This class is derived from the OriginObject class, and can be
used to access Origin axis objects, including axis ticks, grids
and labels. Origin axis objects are contained by axes on an
Origin graph page.

Collection

This class provides a template for collections of various
internal Origin objects, such as Pages (the collection of all
PageBase objects in a project file), etc. This class contains an
implicit templatized type _TemplType, which is the type of one
element of the collection. For example, the templatized type
of the Pages collection in the Project class
(Collection<PageBase> Pages;) is PageBase.

Each collection usually has a parent class, whose data
member is the collection. For example,
Collection<PageBase> Pages is one member of the Project
class, because Project contains all the pages. Therefore,
each collection can be attached or unattached to an internal
object.

All collections can use the methods defined in the Collection
class. The foreach loop is the most useful way for looping
once for each of the elements in the collection.

CollectionEmbeddedPages This class is used to access the pages embedded in a
worksheet.

Column
This class is derived from the DataObject, DataObjectBase
and OriginObject classes, and it inherits their methods and
properties. In this class, methods and properties are provided

http://www.originlab.com/doc/OriginC/ref/vector
http://www.originlab.com/doc/OriginC/ref/Internal-Origin-Objects-Class
http://www.originlab.com/doc/OriginC/ref/Internal-Origin-Objects-Class
http://www.originlab.com/doc/OriginC/ref/Axis
http://www.originlab.com/doc/OriginC/ref/AxisObject
http://www.originlab.com/doc/OriginC/ref/Collection
http://www.originlab.com/doc/OriginC/ref/CollectionEmbeddedPages
http://www.originlab.com/doc/OriginC/ref/Column-Class

 Predefined Classes

21

for dealing with Origin worksheet columns. A worksheet
object contains a collection of Column objects, and each
Column object holds a Dataset. A Column object is mainly
used for controlling the style of data in the associated
Dataset.

A Column object is a wrapper object, which refers to an
internal Origin column object, but does not actually exist in
Origin.

DataObject

This class is derived from the DataObjectBase class, and is
the base class of worksheet columns and matrix objects.
Origin data objects are contained in layers on an Origin page.
For example, columns (data objects) are contained in a
worksheet (layer) on a worksheet window (page).

DataObjectBase

This class is an abstract base class, which provides methods
and properties for handling the class types related to
DataObject and DataPlot, polymorphically. Thus, objects of
this type cannot be constructed, and objects of its derived
classes, such as DataObject, Column, MatrixObject and
DataPlot, should be used instead.

DataPlot

This class is derived from the DataObjectBase and
OriginObject classes, from which it inherits methods and
properties. In this class, methods and properties are provided
for Origin data plots. An internal Origin data plot object is
used to store the characteristics of the Origin data plot, and it
is contained in a graph layer on a graph page.

A DataPlot object is a wrapper object, which refers to an
internal Origin data plot object and does not actually exist in
Origin. Thus, multiple wrapper objects can refer to the same
internal Origin object.

DataRange

Methods and properties are provided in this class for
constructing data ranges and accessing data in a Worksheet,
Matrix or Graph window. This class does not hold data by
itself, it just keeps the data range with the page name, sheet
name (layer index for a graph) and row/column indices (data
plot indices for a graph). Multiple data ranges can be
contained in one DataRange object, and the sub data range
can be the whole data sheet, one column, one row, multiple
continuous columns, or multiple continuous rows.

DataRangeEx This class is the extensional class of DataRange.

DatasetObject This class is used to access non-numeric data sets, which are
usually members of Column objects.

Datasheet
This class is derived from the Layer and OriginObject classes,
and it inherits their methods and properties. This class is used
to handle Origin worksheet and matrix layers.

http://www.originlab.com/doc/OriginC/ref/DataObject
http://www.originlab.com/doc/OriginC/ref/DataObjectBase
http://www.originlab.com/doc/OriginC/ref/DataPlot-Class
http://www.originlab.com/doc/OriginC/ref/DataRange-Class
http://www.originlab.com/doc/OriginC/ref/DataRangeEx
http://www.originlab.com/doc/OriginC/ref/DatasetObject
http://www.originlab.com/doc/OriginC/ref/Datasheet

Origin C Programming Guide

22

Folder

Project Explorer is a user interface inside Origin with
folder/sub-folder structure, just likes Window Explorer. It is
used to organize and access graph, layout, matrix, note, and
worksheet windows in an Origin project file.

The Folder class has the ability to access the methods and
properties of Project Explorer, and contains collections of all
Origin pages and Project Explorer folders.

A Folder object is a wrapper object, which refers to an internal
Origin Project Explorer object but does not actually exist in
Origin. Thus, multiple wrapper objects can refer to the same
internal Origin object.

fpoint3d
This class is used to handle data points that are located in
three-dimensional space, with double type for their (x, y, z)
coordinates.

fpoint
This class is used to handle data points that are located in
two-dimensional, or planar, space and use double type for
their (x, y) coordinates.

GetGraphPoints This class is used to get the position (x, y) of a screen point or
data point from an Origin graph window.

GraphLayer

This class is derived from the Layer and OriginObject classes,
and it inherits their methods and properties. In this class,
methods and properties are provided for Origin graph layers.

Internal Origin graph pages contain one or more graph layers,
and graph layers contain one or more data plots. Thus, the
GraphPage class contains a collection of GraphLayer objects,
and the GraphLayer class contains a collection of DataPlot
objects. A GraphLayer object is a wrapper object, which
refers to an internal Origin graph layer object, but does not
actually exist in Origin. So multiple wrapper objects can refer
to the same internal Origin object.

GraphObject

This class is derived from the OriginObject class, from which
it inherits methods and properties. In this class, methods and
properties are provided for handling Origin graph objects,
which include text annotations, graphic annotations (e.g.
rectangles, arrows, line objects, etc.), data plot style holders,
and region of interest objects.

Origin graph objects are generally contained in layers on an
Origin page, thus the GraphLayer class contains a collection
of GraphObjects. A Graph object is a wrapper object, which
refers to an internal Origin graph object and does not exist in
Origin. So multiple wrapper objects can refer to the same
internal Origin object.

GraphPage
This class is derived from the Page, PageBase, and
OriginObject classes, and it inherits their methods and
properties. In this class, methods and properties are provided

http://www.originlab.com/doc/OriginC/ref/Folder
http://www.originlab.com/doc/OriginC/ref/fpoint3d
http://www.originlab.com/doc/OriginC/ref/fpoint
http://www.originlab.com/doc/OriginC/ref/GetGraphPoints
http://www.originlab.com/doc/OriginC/ref/GraphLayer
http://www.originlab.com/doc/OriginC/ref/GraphObject
http://www.originlab.com/doc/OriginC/ref/GraphPage

 Predefined Classes

23

for handling internal Origin graph pages (windows). A
GraphPage object is a wrapper object, which refers to an
internal Origin graph page object but does not exist in Origin.
Thus, multiple wrapper objects can refer to the same internal
Origin object.

The Project class contains a collection of GraphPage objects,
named GraphPages, in the open project file. A GraphPage
object can be used to locate and access layers on an Origin
graph page, which can then be used to access objects in the
layer, such as DataPlots or GraphicObjects.

GraphPageBase This class is the base class for GraphPage and LayoutPage.

Grid

This class is used to set the format of data sheet windows
(Origin worksheets and matrix sheets). Extra functions are
also provided in this class for data selection, showing
column/row labels, setting cell text color, merging cells, and
so on.

GroupPlot
This class is derived from the OriginObject class and can be
used to handle Origin group plots. GroupPlot objects are
contained in layers on an Origin page.

Layer

This class is derived from the OriginObject class, from which
it inherits methods and properties. In this class, methods and
properties are provided for handling internal Origin layers. All
Origin pages (windows), except note pages, contain one or
more layers. Origin objects found "on" a page are generally
contained by layers which are themselves contained by the
page. Many graph objects are contained in layers, thus the
Layer class contains the collection of graph objects.

A Layer object is a wrapper object, which refers to an internal
Origin layer object but does not actually exist in Origin. So
multiple wrapper objects can refer to the same internal Origin
object.

LayoutPage

This class is derived from the Page, PageBase, and
OriginObject classes, from which it inherits methods and
properties. In this class, methods and properties are provided
for handling internal Origin layout pages (windows). The
Project class contains a collection of LayoutPage objects.

A LayoutPage object is a wrapper object, which refers to an
internal Origin layout page object and does not exist in Origin.
So multiple wrapper objects can refer to the same internal
Origin object.

Layout

This class is derived from the Layer and OriginObject classes,
and it inherits their methods and properties. In this class,
methods and properties are provided for handling internal
Origin layout layers. Origin layout pages contain a layout
layer, which contains other objects.

http://www.originlab.com/doc/OriginC/ref/GraphPageBase
http://www.originlab.com/doc/OriginC/ref/Grid
http://www.originlab.com/doc/OriginC/ref/GroupPlot
http://www.originlab.com/doc/OriginC/ref/Layer
http://www.originlab.com/doc/OriginC/ref/LayoutPage
http://www.originlab.com/doc/OriginC/ref/Layout

Origin C Programming Guide

24

A Layout object is a wrapper object, which refers to an
internal Origin layout object but does not exist in Origin. So
multiple wrapper objects can refer to the same internal Origin
object.

MatrixLayer

This class is derived from the Datasheet, Layer, and
OriginObject classes, from which it inherits methods and
properties. In this class, methods and properties are provided
for handling matrix layers in Origin matrix pages. An Origin
matrix contains a number of matrix objects, thus the
MatrixLayer class contains a collection of the matrix objects in
the matrix layer.

A MatrixLayer object is a wrapper object, which refers to an
internal Origin matrix layer object, and does not actually exist
in Origin. So multiple wrapper objects can refer to the same
internal Origin object.

MatrixObject

This class is derived from the DataObject, DataObjectBase,
and OriginObject classes, and it inherits their methods and
properties. This class is used to handle internal Origin matrix
objects.

MatrixObject is mainly used to control the style of the data in
the internal Origin matrix, while the Matrix class is used to
access the data in the matrix. Thus, the MatrixObject class
has the same relationship with the Matrix class as the Column
class has with the Dataset class. That is to say, an internal
Origin matrix object (MatrixObject) holds a matrix data set
(Matrix), just like a worksheet column (Column) holds a data
set (Dataset). The data values displayed in the cells of a
matrix are considered Z values, whose associated X and Y
values are linearly mapped to the columns and rows of the
matrix, respectively. A MatrixLayer holds a collection of
MatrixObjects, even though there is generally only one
MatrixObject per MatrixLayer.

A MatrixObject is a wrapper object, which refers to an internal
Origin matrix object yet does not actually exist in Origin . So
multiple wrapper objects can refer to the same internal Origin
object.

MatrixPage

This class is derived from the Page, PageBase, and
MatrixPage classes, from which it inherits methods and
properties. In this class, methods and properties are provided
for handling internal Origin matrix pages (windows).

A MatrixPage object is a wrapper object, which refers to an
internal Origin matrix page object but does not exist in Origin.
So multiple wrapper objects can refer to the same internal
Origin object.

The Project class contains a collection of MatrixPage objects,
named MatrixPages, in the open project file. A MatrixPage
object can be used to locate and access layers on the Origin
matrix page, which can then be used to access objects in the
layers, such as MatrixObjects and GraphicObjects.

http://www.originlab.com/doc/OriginC/ref/MatrixLayer
http://www.originlab.com/doc/OriginC/ref/MatrixObject
http://www.originlab.com/doc/OriginC/ref/MatrixPage

 Predefined Classes

25

Note

This class is derived from the PageBase and OriginObject
classes, from which it inherits their methods and properties. In
this class, methods and properties are provided for handling
internal Origin Note pages (windows). The Project class
contains a collection of Note objects.

A Note object is a wrapper object, which refers to an internal
Origin Note page but does not actually exist in Origin. And so,
multiple wrapper objects can refer to the same internal Origin
object.

OriginObject
This class is the Origin C base class for all Origin objects.
Member functions and data members are provided in this
class for all Origin objects.

Page

This class is derived from the PageBase and OriginObject
classes, and it inherits their methods and properties. In this
class, methods and properties are provided for handling
internal Origin pages, which contain one or more layers
(except Note windows). The Page class contains a collection
of the layers in the page.

A Page object is a wrapper object, which refers to an internal
Origin page object but does not exist in Origin. So multiple
wrapper objects can refer to the same internal Origin object.

PageBase

This class provides methods and properties for internal Origin
pages (windows). Usually, this class is used in one of two
ways. One way is by using a PageBase object as a parameter
of a general function, but not using a specific Page object.
The other way is by attaching a PageBase object to an
unknown active page. Both usages can handle the specific
page objects polymorphically. That is also the purpose of this
class: to act as an abstract class for its derived page types,
which include Note, GraphPage, WorksheetPage,
LayoutPage, and MatrixPage.

point This class is used to handle data points located in two-
dimensional, or planar, space, with integer (x, y) coordinates.

Project

This class provides methods and properties for accessing
most objects in an Origin project file. The Project class
includes collections of different page types, and collections of
all the data sets (including loose data sets, that are not in a
worksheet column) in the Project file. This class also provides
methods for getting active objects in a project file, as well as
RootFolder properties, including ActiveCurve, ActiveLayer,
and ActiveFolder.

A Project object is a wrapper object, which refers to an
internal Origin project object but does not actually exist in
Origin. Only one project file can be open in Origin at a time,
so all Project objects refer to the currently open project file.

http://www.originlab.com/doc/OriginC/ref/Note
http://www.originlab.com/doc/OriginC/ref/OriginObject
http://www.originlab.com/doc/OriginC/ref/Page-Class
http://www.originlab.com/doc/OriginC/ref/PageBase
http://www.originlab.com/doc/OriginC/ref/point
http://www.originlab.com/doc/OriginC/ref/Project

Origin C Programming Guide

26

ROIObject

This class is derived from the GraphObject class, from which
it inherits methods and properties. In this class, methods and
properties are provided for working with Origin region of
interest objects. An Origin region of interest object is used to
identify a region of interest in an Origin matrix.

A ROIObject is a wrapper object, which refers to an internal
Origin region of interest object but does not actually exist in
Origin. So multiple wrapper objects can refer to the same
internal Origin object.

Scale

This class is derived from the OriginObject class, from which
it inherits methods and properties. In this class, methods and
properties are provided for handling Origin axis scales. Two
scale objects (X scale and Y scale) are contained in every
graph layer on a graph page.

A Scale object is a wrapper object, which refers to an internal
Origin scale object but does not actually exist in Origin. This
means that multiple wrapper objects can refer to the same
internal Origin object.

storage

Origin allows for saving binary type (TreeNode type) and INI
type (INIFile type) information in Origin objects, which can be
any Origin C objects derived from the OriginObject class,
such as a WorksheetPage, Column, Folder, GraphPage,
GraphLayer, DataPlot, Project, etc.

StyleHolder

This class is derived from the GraphObject and OriginObject
classes, and it inherits their methods and properties. In this
class, methods and properties are provided for data plot style
holders. A data plot style holder is used to store plot type
information.

A StyleHolder object is a wrapper object, which refers to an
internal Origin StyleHolder object but does not actually exist in
Origin. So multiple wrapper objects can refer to the same
internal Origin object.

UndoBlock This class provides two functions for accessing projects
safely, UndoBlockBegin() and UndoBlockEnd().

WorksheetPage

This class is derived from the Page, PageBase, and
OriginObject classes, and it inherits their methods and
properties. In this class, methods and properties are provided
for internal Origin worksheet pages (windows). The Project
class contains a collection of WorksheetPage objects.

A WorksheetPage object is a wrapper object, which refers to
an internal Origin worksheet page object, but does not
actually exist in Origin. So multiple wrapper objects can refer
to the same internal Origin object.

Worksheet This class is derived from the Datasheet, Layer, and
OriginObject classes, from which it inherits methods and

http://www.originlab.com/doc/OriginC/ref/ROIObject
http://www.originlab.com/doc/OriginC/ref/Scale
http://www.originlab.com/doc/OriginC/ref/storage
http://www.originlab.com/doc/OriginC/ref/StyleHolder
http://www.originlab.com/doc/OriginC/ref/UndoBlock
http://www.originlab.com/doc/OriginC/ref/WorksheetPage
http://www.originlab.com/doc/OriginC/ref/Worksheet-Class

 Predefined Classes

27

properties. In this class, methods and properties are provided
for handling worksheet layers on Origin worksheet pages. An
Origin worksheet may contain a number of worksheet
columns, thus the Worksheet class contains a collection of all
the columns in the worksheet.

A Worksheet object is a wrapper object, which refers to an
internal Origin worksheet object, and does not exist in Origin.
So multiple wrapper objects can refer to the same internal
Origin object.

XYRange

This class is derived from the DataRange class, from which it
inherits methods and properties. By using methods defined in
this class, the data range, which has one independent
variable (X) and one dependent variable (Y), can be gotten
from matrix and worksheet windows, and put into matrix and
worksheet windows. It can also be used to make a plot on a
graph window.

Just like the DataRange class, XYRange does not hold data
itself, but just keeps the data range with page name, sheet
name (layer index for a graph) and row/column indices (data
plot indices for a graph). Every XYRange object can contain
multiple sub XY data ranges.

XYRangeComplex

This class is derived from the XYRange and DataRange
classes, and it inherits their methods and properties. This
class is used to get and set XY data sets of complex type for
matrix and worksheet windows.

Just like the DataRange class, the XYRangeComplex class
does not hold data itself, but just keeps the data range with
page name, sheet name and row/column indices. Every
XYRangeComplex object can contain multiple sub XY
complex data ranges.

XYZRange

This class is derived from the DataRange class, from which it
inherits methods and properties. This class is used to get and
set XYZ data sets for matrix and worksheet windows.

Just like the DataRange class, the XYZRange class does not
hold data itself, but just keeps the data range with page
name, sheet name and row/column indices. Every XYZRange
object can contain multiple sub XYZ data ranges.

3.6 System Class

The following classes are about system settings. For more details, please refer to the Origin C:
Origin C Reference: Classes: System chapter in the help document of OriginC.

Class Brief Description

file
This class is used to control the permission to read/write the binary files by using
unbuffered io (accessing immediate disk). It is similar to the MFC CFile class.
Please also refer to the stdioFile class, which is for buffered stream io to text

http://www.originlab.com/doc/OriginC/ref/XYRange
http://www.originlab.com/doc/OriginC/ref/XYRangeComplex
http://www.originlab.com/doc/OriginC/ref/XYZRange
http://www.originlab.com/doc/OriginC/ref/System-Class
http://www.originlab.com/doc/OriginC/ref/System-Class
http://www.originlab.com/doc/OriginC/ref/file

Origin C Programming Guide

28

files.

INIFile This class is used to access the data stored in the initialization file.

Registry The methods in this class are used to access Windows registry.

stdioFile

This class is derived from the file class, from which it inherits methods and
properties. This class is used to control the permission to read/write the text and
binary files by using buffered stream io. However, this class does not support
stream io to stdin, stdout, and stderr. Please also refer to the file class, which is
for unbuffered io to binary files.

3.7 User Interface Controls Class

 The following classes are about user interface. For more details, please refer to the Origin C: Origin
C Reference: Classes: User Interface Controls chapter in the help document of OriginC.
The classes marked with * are only available in Origin with the DeveloperKit installed.

Class Brief Description

*BitmapRadioButton This class provides the functionality of bitmap radio button controls.

*Button

This class provides the functionality of button controls. A button
control is a small rectangular child window, which can be clicked on
and off. The button will change its appearance when clicked. Typical
buttons include check boxes, radio buttons and push buttons.

*CmdTarget

This class is the base class for message map architecture. A
message map is used to send a command or message to the
member functions you have written, and then the member functions
handle the command or message. (A command is a message from a
menu item, command button, or accelerator key.)

Two key framework classes are derived from this class: Window and
ObjectCmdTarget. To create a new class for handling messages,
you can just derive your new class from one of these two classes.
There is no need to derive from CmdTarget directly.

*CodeEdit This class is derived from the RichEdit class. It is used to display the
redefined color for key words in coding text.

*ColorText This class is only available in Origin packages that have the
DeveloperKit installed.

*ComboBox This class is used to define combobox control.

*Control This class provides the base functionality of all controls.

*DeviceContext This class is used to define device-context objects.

http://www.originlab.com/doc/OriginC/ref/INIFile
http://www.originlab.com/doc/OriginC/ref/Registry
http://www.originlab.com/doc/OriginC/ref/stdioFile
http://www.originlab.com/doc/OriginC/ref/User-Interface-Controls-Class
http://www.originlab.com/doc/OriginC/ref/User-Interface-Controls-Class
http://www.originlab.com/doc/OriginC/ref/BitmapRadioButton
http://www.originlab.com/doc/OriginC/ref/Button
http://www.originlab.com/doc/OriginC/ref/CmdTarget
http://www.originlab.com/doc/OriginC/ref/CodeEdit
http://www.originlab.com/doc/OriginC/ref/ColorText
http://www.originlab.com/doc/OriginC/ref/ComboBox
http://www.originlab.com/doc/OriginC/ref/Control
http://www.originlab.com/doc/OriginC/ref/DeviceContext

 Predefined Classes

29

*DhtmlControl //add description here

*Dialog This class is the base class for displaying dialog boxes on the
screen.

*DialogBar This class is used to create a Dockable control bar with a child Origin
C-driven dialog.

*DynaControl

This class is used to generate various types of customized interface
controls dynamically, such as an edit box, combo box, check box, or
radio button. The values will be stored in a tree node, and the on
dialog will display as a tree structure.

*Edit This class is used to create edit controls. An edit control is a
rectangular child window, which can be filled with text.

*GraphControl

This class is derived from the OriginControls, Control and Window
classes, from which it inherits methods and properties. Methods
defined in this class can be used to display an Origin Graph within
the specified control on the dialog.

GraphObjTool
This class is the base class of GraphObjCurveTool. It is used to
create and manage a rectangle on an Origin graph window, around
the region of interest and containing the data.

GraphObjCurveTool

This class is derived from GraphObjTool, from which it inherits
methods and properties. With these methods and properties, it can
be used to create and manage a rectangle on an Origin graph
window, around the region of interest and containing the data. This
class also provides methods for adding a context menu and the
related event functions.

*ListBox This class is used to define list boxes. A list box shows a list of string
items for viewing and selecting.

*Menu This class is used to handle menus, including creating, tracking,
updating and destroying them.

*OriginControls This class is the base class for displaying the Origin window on
dialog.

*PictureControl This class is used to paint a PictureHolder object within the control
on dialog.

progressBox

This class provides methods and properties for opening and
controlling progress dialog boxes. A progress dialog box is a small
dialog box that indicates the software is busy processing data. This
dialog box contains a progress bar for showing the fraction of the
completed processing. The progress dialog box is usually used in
iterative loops.

http://www.originlab.com/doc/OriginC/ref/DhtmlControl
http://www.originlab.com/doc/OriginC/ref/Dialog-class
http://www.originlab.com/doc/OriginC/ref/DialogBar
http://www.originlab.com/doc/OriginC/ref/DynaControl
http://www.originlab.com/doc/OriginC/ref/Edit
http://www.originlab.com/doc/OriginC/ref/GraphControl
http://www.originlab.com/doc/OriginC/ref/GraphObjTool
http://www.originlab.com/doc/OriginC/ref/GraphObjCurveTool
http://www.originlab.com/doc/OriginC/ref/ListBox
http://www.originlab.com/doc/OriginC/ref/Menu
http://www.originlab.com/doc/OriginC/ref/OriginControls
http://www.originlab.com/doc/OriginC/ref/PictureControl
http://www.originlab.com/doc/OriginC/ref/progressBox

Origin C Programming Guide

30

*PropertyPage This class is used to construct individual page objects of property
sheets in a wizard dialog.

*PropertySheet
This class is used to construct property sheets in a wizard dialog.
One property sheet object can contain multiple property page
objects.

*RichEdit
This class provides methods for formatting text. A rich edit control is
a window, in which text can be written and edited. The text can be in
character and paragraph formatting.

*Slider

A slider control is a window with a slider and optional ticks. When the
slider is moved by the mouse or the directional keys on the
keyboard, the control will send a notification message to implement
the change.

*SpinButton

A spin button control is a pair of arrow buttons that can be used to
increase or decrease a value, such as scroll position or the number
displaying in an accompanying control. This value is called the
current position.

*TabControl
A tab control is used to display different information under different
tabs in a dialog. This class provides methods to add/delete tab items
for displaying a group of controls.

waitCursor
A wait cursor is a visual sign for indicating that the software is busy
processing data. This class provides methods and properties for
opening and controlling wait cursors.

*Window This class is the base class of all window classes. It is similar to the
MFC CWnd class.

*WizardControl
This class is used to construct wizard controls for implementing
something step by step in a dialog. The methods available in this
class enable you to add/delete steps.

*WizardSheet This class is used to construct property sheet objects in a wizard
dialog. A property sheet contains one or more property page objects.

*WorksheetControl

This class is derived from the OriginControls, Control and Window
classes, and it inherits their methods and properties. The methods
available in this class can be used to display an Origin Worksheet
within the specified control in a dialog.

*WndContainer This class is the base class of the derived control classes.

3.8 Utility Class

http://www.originlab.com/doc/OriginC/ref/PropertyPage
http://www.originlab.com/doc/OriginC/ref/PropertySheet
http://www.originlab.com/doc/OriginC/ref/RichEdit
http://www.originlab.com/doc/OriginC/ref/Slider
http://www.originlab.com/doc/OriginC/ref/SpinButton
http://www.originlab.com/doc/OriginC/ref/TabControl
http://www.originlab.com/doc/OriginC/ref/waitCursor
http://www.originlab.com/doc/OriginC/ref/Window
http://www.originlab.com/doc/OriginC/ref/WizardControl
http://www.originlab.com/doc/OriginC/ref/WizardSheet
http://www.originlab.com/doc/OriginC/ref/WorksheetControl
http://www.originlab.com/doc/OriginC/ref/WndContainer

 Predefined Classes

31

For more details about the following classes, please refer to the Origin C: Origin C Reference:
Classes: Utility chapter in the help document of OriginC.

Class Brief Description

Array

This class is a collection of almost all data types and objects. When
Array::IsOwner is TRUE, the array will be the owner of the memories that are
allocated to the objects. And the objects will be destroyed when the array is
resized or destructed.

BitsHex This class is used to compress byte vectors (1 and 0) to hexadecimal strings, and
decompress hexadecimal strings to byte vectors.

Profiler This class can be used to measure the call times of various functions to find out
the slower ones.

http://www.originlab.com/doc/OriginC/ref/Utility
http://www.originlab.com/doc/OriginC/ref/Utility
http://www.originlab.com/doc/OriginC/ref/Array
http://www.originlab.com/doc/OriginC/ref/BitsHex
http://www.originlab.com/doc/OriginC/ref/Profiler

33

44 Creating and Using Origin C Code

4.1 Creating and Using Origin C Code

This section covers the following topics:

¶ Create and Edit an Origin C File

¶ Compiling, Linking and Loading

¶ Debugging

¶ Using Compiled Functions

¶ Distributing Origin C Code

4.2 Create and Edit an Origin C File

4.2.1 Overview

Code Builder is an Integrated Development Environment (IDE) for Origin C and LabTalk
programming. Code Builder provides tools for writing/editing, compiling, linking, debugging, and
executing your Origin C code. Although Origin C code can be written in any text editor, it must be
added to Code Builder's Workspace to be compiled and linked.

http://www.originlab.com/doc/OriginC/guide/Create-and-Edit-an-Origin-C-File
http://www.originlab.com/doc/OriginC/guide/Compiling-Linking-and-Loading
http://www.originlab.com/doc/OriginC/guide/Debugging
http://www.originlab.com/doc/OriginC/guide/Using-Compiled-Functions
http://www.originlab.com/doc/OriginC/guide/Distributing-Origin-C-Code

Origin C Programming Guide

34

The Code Builder window

4.2.2 File Types

Origin C utilizes four types of files: source, object, preprocessed, and workspace.

4.2.2.1 Source (*.c, *.cpp, *.h, *.ocz)

Source files are essentially text files that contain human-readable Origin C code. You may create
them in Code Builder or another text editor, and save them to any location. Code Builder's text editor
provides syntax coloring, context-sensitive help and debugging features. Code Builder also allows
you to create an encrypted Origin C source file (*.ocz) so it can be safely shared with others.
Until source files have been compiled, linked and loaded, the functions they contain cannot be used
in Origin.

4.2.2.2 Object (*.ocb)

When a source file is compiled, an object file is produced. The object file will have the same file name
as the source file, but will be given the *.ocb file extension. The object file is machine readable, and
is what Origin uses to execute functions that are called. Origin compiles a source file for the first time,
and then recompiles only when the source file is changed.
Object files in Origin are version specific, and therefore, sharing them is discouraged. If you wish to
share some functions or Origin C applications, share preprocessed files instead.

 Creating and Using Origin C Code

35

4.2.2.3 Preprocessed (*.op)

By default, Origin compiles source files to produce object files. However, the system variables below
can be changed to produce a preprocessed file instead of an object file. Preprocessed files still
require compiling, but have the following advantages for code sharing:

¶ Origin version independent

¶ Functions can be shared without sharing source code

¶ The build process happens much faster than with source files

The system variables that allow you to produce either object (OCB) or preprocessed (OP) files are
@OCS, @OCSB, and @OCSE. You can change their values in the Script Window or in the Code
Builder LabTalk Console. For example, in the Script Window, enter:

@OCSB=0; // Hereafter, on compile, generate OP files

@OCS

The default value of this variable is 1, which allows you to create an OCB file or OP file. If @OCS=0,
the compiler will not create an OCB file or an OP file.

@OCSB

The default value of @OCSB=1; this generates an object file at compile time. To generate an OP file,
set @OCSB=0, after which OP files will be generated at compile time. The OP file will be saved in the
same folder as its source file and have the same file name, but with the OP extension. Note that if
@OCS=0, this variable is meaningless.

@OCSE

This variable is only available in OriginPro. Its default value is 1. By default the compiler will generate
an encrypted OP file, which will hide implementation details. The encrypted OP file can be loaded
and linked by either Origin or OriginPro versions. Note: this variable is only meaningful when
@OCSB=0.

Notes:

1. The generated OP and OCB have 32 bit and 64 bit versions. For example, the op
file generated from abc.c file on a 32 bit version will be named as abc_32.OP.

2. Since Origin 9.0, the generated 32 bit or 64 bit version file works only in its
corresponding version (32 bit or 64 bit) of Origin.

4.2.2.4 Workspace (*.ocw)

In Code Builder, you may create or use a project that contains many Origin C source files. These files
may or may not be hierarchically organized in folders. It would be very inconvenient to have to load
many such files manually each time you switched between projects.
For this reason, the structure and files contained in the User folder can be saved to a workspace file.
Upon loading a workspace file into Code Builder, a project is restored to the state in which it was last
saved; all of your source files are available in whatever structure they were assigned.

Origin C Programming Guide

36

4.2.3 The Workspace View

The Code Builder Workspace view contains six folders:
1. Apps

2. Project

3. System

4. Temporary

5. User [AutoLoad]

6. User

The Workspace View
The files in each folder are compiled and linked following different events.

4.2.3.1 Apps

This folder is used to manage packages. This folder contains only folders, and each folder represents
a disk folder in User Files Folder. A special folder named Common is used for holding files that are
shared between all packages. Each package folder contains a subfolder named "User Files", which
contains files that are in the User Files Folder.

¶ Context menu of "Apps" folder

When you right click on the Apps folder, there is a context menu with two items:
1. Add Existing Folder...

 Creating and Using Origin C Code

37

2. New

The first is for choosing a folder that already exists in the User Files Folder, and the second is for
creating a new folder named Untitled which also creates a new disk folder named Untitled in User
Files Folder. Repeating New will create enumerated Untitled folders.

¶ Context menus of each package folder except Common.

1. Add Files

This is used to add files to the folder. Each package folder represent a disk folder in User
Files Folder. If an added file is from your User Files Folder, then the file is placed in the
"User Files" subfolder to indicate where it will be installed. If selected files are not already
in the User Files Folder and not in User Files Folder\packageFolder\, they will be copied
to User Files Folder\packageFolder\ folder.

2. Show Full Path
Show or hide the full path of the files.

3. Rename
Rename the package folder.

4. Delete
Delete the package folder. If a disk folder exists, you will be asked if you want to delete
the disk folder and files also.

5. Duplicate
Duplicate the package folder and its files.

6. Generate
Launch the Package Manager and add the files from the package folder. If an OPX in the
User Files Folder with the same name exists, that OPX will be loaded and all files
removed before adding all the files from the package folder.

7. Generate with Common
Same as Generate, but the files in the Common folder are also added.

Note: Because Common is not a package, its Context menu has only the first two items. This is also
true for User Files folder found in each package.

4.2.3.2 Project

Files in the Project folder are saved within the current Origin project file (*.OPJ). They are added to
the Project folder of the Code Builder workspace when you open an Origin project file containing
them. They are automatically compiled and linked upon opening the project file.

4.2.3.3 System

Files in the System folder are externally saved in Windows folders (usually in the Origin C folder or
one of its subfolders). They are automatically added to the System folder of the Code Builder
workspace, compiled, and linked whenever Origin starts.

4.2.3.4 Temporary

Origin C Programming Guide

38

All files that are not listed in the Project, System, or User folders, and get loaded and compiled when
using Origin, will appear in the Temporary folder. For example, if you export a graph then all the files
used for handling a graph export will appear in the Temporary folder.

4.2.3.5 User [AutoLoad]

This folder is similar with the User Folder described below, except that the files in this folder will be
compiled and linked automatically when Origin is started, and then the functions defined in the files
under this folder are available, and no need to compile and link manually.

4.2.3.6 User

Files in the User folder are externally saved in Windows folders and are manually added to the User
folder of the Code Builder workspace, compiled, and linked by the user in Code Builder.

Notes:

The contents of the Apps and User [AutoLoad] folders persist across all Origin
sessions, while the contents of the Project folder are unique to each Project file
(OPJ).

4.2.4 Code Builder Quick Start

Get started using Code Builder in just a few steps:
1. Open Code Builder by pressing Alt+4 on the keyboard or by clicking the Code Builder toolbar

button .

2. Create a new source code file by pressing Ctrl-N or by clicking the New toolbar button. When

the New File dialog appears enter a name for your source code file and then press Enter or

click the OK button.

3. An editor window will open. Go to the end of the last line in the editor window and press enter

to start a new blank line. Enter the following function:

void HelloWorld ()

{

 printf("Hello World, from Origin C \ n") ;

}

4. Before we can call this function we need to compile and link the code. You can do this by

pressing Shift+F8 or by clicking the Build toolbar button .

 Creating and Using Origin C Code

39

5. The Output window will show the compiling and linking progress. If any errors appear, then

double check your function and fix the errors. When no errors appear, the function is ready to

be called.

6. Click in the top part of the Command & Results window. Type the name of your function and

press Enter. In the bottom part of the Command & Results window you should see a repeat of

your function's name, and the line you entered, followed by a line with your function's output.

While these steps are sufficient to get you going with Code Builder, there are many more details that
will help you write, debug and execute your Origin C files effectively. These are covered in the
sections that follow.

4.3 Compiling, Linking and Loading

Before you can access your Origin C functions, you will need to compile and link them (a process
known as building) using Code Builder.
Once your functions compile and link without error, they are loaded automatically, and you will be
able to access them from the current Origin session. To access your functions in future sessions of
Origin you will need to ensure that they are reloaded and linked; a process that is fast and can be
automated.
This chapter covers the manual and automated build process for Origin C source files and
preprocessed files.

4.3.1 Compiling and Linking

In order to make the functions defined in an Origin C source file or preprocessed file executable for
the first time, the following steps are necessary:

¶ Add the file to the Code Builder workspace

¶ Compile the file

¶ Link the file to all dependents, compiling dependents where necessary, and load the object files

that are created.

The act of compiling and linking all the files is referred to as building.

4.3.1.1 Add the File to the Workspace

Before a source file or preprocessed file can be compiled and linked, the file must be added to one of
the Code Builder workspace folders: Project, User, System, or Temporary. Note that all source files
are initially created or loaded into the User folder.

4.3.1.2 Compile the File

After adding the file to the workspace, it needs to be compiled (by clicking the Compile button) to
generate the object file, which will have the same name as the source/preprocessed file, but with the
OCB file extension. In Origin versions 8.1 and later, the object file will be saved in the Application
Data folder. In older versions the file was saved to the User Files\OCTemp folder.

http://www.originlab.com/doc/OriginC/guide/Create-and-Edit-an-Origin-C-File
http://www.originlab.com/doc/OriginC/guide/Create-and-Edit-an-Origin-C-File

Origin C Programming Guide

40

4.3.1.3 Build the Workspace

To build the active file and all its dependents, select the Build button, or select the Rebuild All

button to build all files in the workspace. The object file that is created will be automatically loaded
into memory and linked so that the functions defined in the file are executable within Origin.
Once the object file is generated, subsequent build processes will be much faster. If there are no
changes to the built source/preprocessed file, Code Builder will load and link the object file directly,
but not rebuild the file.

Build vs. Build All

Build: All of the files in a given folder are compiled and linked when that folder is the active window in

the Code Builder (or a dependent of the active window) and the Build toolbar button is clicked.
Build All: files in all Code Builder folders are compiled and linked when the Code Builder Rebuild All

toolbar button is clicked.

4.3.2 Automated Building

Initially, all Origin C source or preprocessed files are created or opened in the User folder, and the
discussion above gives details for manually building Origin C source files. Many times, however, it is
advantageous to automate the build process.
This can be done by making use of Code Builder's folder structure, each with slightly different
functionality, or by utilizing the Build on Startup option:

¶ Add files to Code Builder's Project folder, and they will be built automatically each time the

associated Origin project is opened.

¶ Add files to Code Builder's System folder, and they will be built automatically each time Origin

starts. Files in the System folder are also rebuilt each time an Origin project or a Code Builder

project is started or opened.

¶ The Build on Startup option will build the most recently opened Code Builder workspace upon

Origin startup.

4.3.2.1 Add files to the Project Folder

You can add files to the System folder using the following methods:

¶ Right-click on the Project folder and choose Add files.

¶ Drag a file from another Workspace folder and drop it on the Project folder.

4.3.2.2 Add files to the System Folder

You can add files to the System folder using the following methods:

¶ Right-click on the System folder and choose Add files.

¶ Drag a file from another Workspace folder and drop it on the System folder.

 Creating and Using Origin C Code

41

¶ Close Code Builder

Closing Code Builder Edits the OriginCSystem section in the Origin.ini file to include your file when
Origin starts so your functions are always ready.

4.3.2.3 Build Workspace on Origin Startup

When Origin starts it will examine the contents of the Origin C Workspace System folder and if it finds
any changed files then it will try to compile and link them. You also can have this procedure done to
the files in the User folders by enabling the Build on Startup option.

¶ Activate Code Builder

¶ If the Workspace view is not visible then choose Workspace on the View menu.

¶ Right-click on Origin C Workspace.

¶ If the Build on Startup item is not checked then click it.

The next time you start Origin it will check the files in the User folder and try to compile and link any
changed files.

4.3.2.4 Build Individual Source File on Origin Startup

The following steps show how to modify the Origin.ini to load and compile Origin C source files on
startup.

1. Make sure Origin is not running. Open the Origin.ini file in your User Files Folder(type

"%Y="<Enter> in the Script or Command window to locate your User File Folder). If you do not

find the file there, turn to the Origin installation folder.

2. In the [Config] section, uncomment (remove the leading ";") OgsN = OEvents. N here can be

any unique number. Save and close this file.

3. Open OEvents.ogs under the Origin installation folder. Find the [AfterCompileSystem] section

and add the following line as a new line

run. LoadOC(Originlab \ AscImpOptions, 16) ;

4. Save and close this file.

5. Restart Origin and open Code Builder. In the Temporary folder, there are 3 files.

AscImpOptions depends on fu_utils.c and Import_utils.c, so the compiler compiles AscImp,

along with the two files. For more details please search run.LoadOC in your Labtalk

documentation.

Alternatively, starting with Origin 2015, Origin supports the User [AutoLoad] folder in Workspace.
Files added in the folder will be automatically loaded on Origin startup.

¶ Right-click on the User [AutoLoad] folder and choose Add files.

Origin C Programming Guide

42

¶ Drag a file from another Workspace folder and drop it on the User [AutoLoad] folder.

4.3.3 Building by Script

When you want to call an Origin C function in LabTalk script, you need to make sure the source file
has been compiled and linking is done. You can then use the LabTalk command Run.LoadOC to
compile and link the specific source file. For example:

1. Choose File->New Workspace... to create a new workspace. The Temporary folder should be

empty now.

2. Run the following script in the Command Window... the dragNdrop.c file together with its

dependent files all are loaded into the Temporary folder and compiled.

if (run. LoadOC(OriginLab \ dragNdrop. c, 16) != 0)

{

 type "Failed to load dragNdrop.c!" ;

 return 0;

}

4.3.4 Identifying Errors

When you compile and link source files in Code Builder, the compiling and linking results are
displayed in the Code Builder Output window.
If the compiling and linking was successful, the Output window lists the source files that were
compiled. The Done! line indicates success.
If errors were encountered during the compiling and linking process, the Output window lists the file
name, line number, and the error encountered. You can double-click on the error line in the Output
window to activate the source file and position the cursor on the line of code containing the error.

 Creating and Using Origin C Code

43

4.4 Debugging

4.4.1 Debugging in Code Builder

Code Builder has features that allow you to debug your Origin C and LabTalk code. You can set and
remove breakpoints, step through your code one statement at a time, step into and out of functions,
and monitor the values of variables. Debugging is turned on by default. You can turn debugging on or
off using the Enable Breakpoints item on the Debug menu. If there is a check mark next to the item
then debugging is turned on.

4.4.2 Macros for Debugging

Origin C allows users to define multi-parameter macros which have many uses. Many programmers
use output statements while developing code to indicate program flow and display the values of
variables at key moments.

Create an Output Macro

A convenient debugging technique is to define an output macro and then place that macro throughout
your code as shown below.

#define DBG_OUT(_te xt, _value) out_int (_text, _value) ;

void DebugStatements ()

{

 int ii;

 DBG_OUT("ii at t0 = " , ii)

 ii ++;

 DBG_OUT("ii at t1 = " , ii)

 ii ++;

 DBG_OUT("ii at t2 = " , ii)

 ii ++;

 DBG_OUT("ii at t3 = " , ii)

 printf("Fi nished running DebugMacros.") ;

}

Comment the Debug Macro Body

During the development cycle the body of the macro can remain defined as above causing the
desired debug messages to be shown on the message box. However, once development is complete
(or at least stable) the macro can be redefined as below causing the debug statements to disappear.

#define DBG_OUT(_text, _value) // out_int(_text, _value);

Commenting out the body of the DBG_OUT macro (and rebuilding) causes the debug statements to
disappear without having to remove the many possible instances of its use, saving them for possible
reuse in the future. Should the code ever need to be modified or debugged again the body of the
macro can simply be uncommented.

4.5 Using Compiled Functions

http://www.originlab.com/doc/OriginC/guide/Create-and-Edit-an-Origin-C-File

Origin C Programming Guide

44

Once Origin C functions have been compiled, linked and loaded, they are ready to be used in Origin.
This means calling the function by its name and providing the necessary arguments from any location
in Origin that accepts LabTalk script commands. Common locations include the script window, the
command window, or a custom button in the Origin GUI. Running Scripts chapter of the LabTalk
Scripting Guide details all of the locations in Origin from which script, and therefore Origin C
functions, can be used.

4.5.1 Accessing Origin C Functions from LabTalk Script

Origin C functions can be called from other Origin C functions and from LabTalk scripts. This section
talks about how to control the access to Origin C functions from LabTalk.
For information about accessing LabTalk from your Origin C code, refer to the Accessing LabTalk
chapter.

4.5.1.1 Origin C Access from LabTalk

You can control LabTalk access to your Origin C code by putting a pragma statement in your Origin C
code before your function definitions.

#pragma labtalk(0) // Disable OC functions in LabTalk

void foo0 ()

{

}

#pragma labtalk (1) // Enable OC functions in LabTal k (default)

void foo1 ()

{

}

#pragma labtalk (2) // Require '''run - oc''' LabTalk command

void foo2 ()

{

}

The above code prevents foo0 from being called from LabTalk, allows foo1 to be called from LabTalk,
and allows foo2 to be called from LabTalk using the run -oc command. If you were to comment out
the second pragma, then both foo0 and foo1 would be prevented from being called from LabTalk.
This is because a single pragma statement applies to all functions after the pragma and up to the
next pragma or the end of the file.
There is also a LabTalk system variable that controls LabTalk access to all Origin C functions. The
variable is @OC, and it defaults to 1, which enables access. Setting the variable to 0 disables
access.

4.5.1.2 Listing Functions that can be Called from LabTalk

The LabTalk list command can be used to output all the names of Origin C functions that can be
called from LabTalk. Options let you modify which type of functions is listed:

list f; // List functions callable from LabTalk

list fs; // List only those returning a string

list fv; // List only those returning a vector

list fn; // List only those returning a numeric

list fo; // List only those returning void

http://www.originlab.com/doc/LabTalk/guide/Running-Scripts
http://www.originlab.com/doc/LabTalk/guide/Running-Scripts
http://www.originlab.com/doc/OriginC/guide/Accessing-LabTalk

 Creating and Using Origin C Code

45

Note that setting @OC=0 will make Origin C functions effectively invisible to LabTalk, such that the
list f command will give no result.

4.5.1.3 Passing Arguments to Functions

LabTalk script does not support all of the data types used internally by Origin C. The following table
lists the LabTalk variable types that should be passed (or returned) when calling an Origin C Function
with the given argument (or return) type. The final column indicates whether or not that argument type
can be passed by reference.

Origin C LabTalk Pass By Reference?

int int Yes

double double Yes

string string Yes

bool int No

matrix matrix range Yes

vector<int> dataset Yes

vector<double> dataset Yes

vector<complex> dataset No

vector<string> dataset, string array* No

* string arrays cannot be passed by reference

As the table above indicates, arguments of Origin C functions of type string, int, and double may be
passed by value or by reference from LabTalk. Note, however, that the Origin C function must be
written for the type of pass being performed.

Passing by Value

Below are examples of passing arguments by value from LabTalk to Origin C. The format for each
example is to give the Origin C function declaration line, and then the LabTalk code used to call it.
The Origin C function body is left out since it is unimportant for demonstrating variable passing.
The simple case of a function accepts an argument of type double and returns a double.

double square (double a) // Origin C function declaration

double dd = 3.2 ; // LabTalk function call

double ss = square (dd) ;

ss =; // ss = 10.24

Here, an Origin C function that takes a vector argument and returns a vector, is called by LabTalk
using data set variables, or ranges that are assigned to data types.

vector <string > PassStrArray (vec tor <string > strvec)

Can be called three ways from LabTalk:

http://www.originlab.com/doc/LabTalk/guide/Data-Types-and-vars

Origin C Programming Guide

46

dataset dA, dB;

dB = Col (B) ;

dA=PassStrArray (dB) ;

Col (A) =PassStrArray (Col (B)) ; // Or, use Col directly, Col = dataset

// Or, LabTalk ranges may also be used

range ra = [Book1] 1! 1, rb = [Book1] 1! 2;

ra = PassStrArray (rb) ;

Passing by Reference

For the Origin C function below, note the ampersand & character in the argument declaration,
indicating that the argument will be passed by reference.

double increment (double & a, double dStep)

double d = 4;

i ncrement (d, 6) ;

type - a "d = $(d)" ; // d = 10

The following example demonstrates some arguments being passed by reference and others being
passed by value.

int get_min_max_double_arr (vector <double > vd, double & min, double & max)

dataset ds = data (2, 30, 2) ;

double dMin, dMax;

get_min_max_double_arr (ds, dMin, dMax) ;

//Or use a data set from a column; be sure to put data in Col(A)

get_min_max_double_arr (Col (A) , dMin, dMax) ;

The following example shows passing a LabTalk matrix range variable by reference to an Origin C
function.

// set data from vector to matrix

void set_mat_data (const vector <double >& vd, matrix & mat)

{

 mat. SetSize(4, 4) ;

 mat. SetByVector(vd) ;

}

range mm = [MBook1] 1! 1;

dataset ds = data (0, 30, 2) ;

set_mat_data (ds, mm) ;

4.5.1.4 Precedence Rules for Functions with the Same Name

When a user-defined or global Origin C function has the same name as a built-in LabTalk function,
the Origin C function has higher precedence, except when using LabTalk vector notation.
Precedence:

1. LabTalk Function (vector)

2. Origin C Function

3. LabTalk Function (scalar)

Thus, LabTalk functions like Normal and Data (which return a range of values and are thus used in

 Creating and Using Origin C Code

47

vector notation) would have higher precedence than Origin C functions of the same name. In all other
cases, the Origin C function is called.

4.5.2 Defining Functions for the Set Values Dialog

You may want to define a function using Origin C, that will appear in the Set Values menu of either a
column or a matrix.
If an Origin C function is built as part of an Origin project---either automatically by being placed in the
Project or System folder of Code Builder, or manually by building a function in the User folder---it will
be available in the User-Defined section of the F(x) menu in the Set Values dialogs (for both
Columns and Matrices). To assign a function to a different section of the F(x) menu, issue a pragma
containing the new section name as part of the function header. For instance, the following code will
add function add2num to the Math section and function mean2num to the Statistics section:

#pragma labtalk (1,Math)

double add2num(double a, double b)

{

 return a + b;

}

#pragma labtalk (1,Statistics)

double mean2num(double a, double b)

{

 return (a + b) / 2;

}

In this way, many functions can be defined in a single source file and, upon building, be immediately
available in the desired locations of the F(x) menu.
Functions to be added to the F(x) menu must conform to the following additional restrictions:

¶ The return type of the function cannot be void

¶ The function should not have reference or pointer (&) for argument type

4.6 Distributing Origin C Code

4.6.1 Distributing Source Code

Origin users can share Origin C source code with one another by distributing either the source files
themselves (.C, .CPP, .OCZ) or preprocessed files (.OP).
If it is not necessary for others to see your application's source code, it is highly recommended that
you distribute the encrypted Origin C source files (.OCZ) or preprocessed files (.OP) for version
before Origin 2015 instead of the source files (.C or .CPP).
For encrypted OCZ files, users only need to drag and drop them into Code Builder in Origin to view
and edit content. A prompt will show up to ask for the password when you try to open it for the first
time but it will be only asked once in same Origin session.
See the File Types in the Create and Edit an Origin C File section for more information.

When an encrypted OCZ file is open in Origin session, since Origin 2016 SR0 user
can choose to re-save the *.ocz file as not encrypted *.c or *.cpp by selecting menu
File: Save As and choose a file type in Save as type drop-down list.

http://www.originlab.com/doc/
http://www.originlab.com/doc/OriginC/guide/Create-and-Edit-an-Origin-C-File

Origin C Programming Guide

48

4.6.2 Distributing Applications

After creating an application, you can distribute it as a single package file to other Origin users.
Use Package Manager to package all the application files into a single package file (.OPX). Note that
when adding your application files into the package, be sure to add the preprocessed files (.OP) or
the source files (.C or .CPP). It is not necessary to add both.
Users can install your application by dropping the package file directly into Origin.
The following is an example that shows how to package all the application files into one OPX file. The
user can drop the package file into Origin to install, then click a button to run the source file.

1. Prepare an Origin C source file. In Code Builder, choose menu File: New to create a new c

file named MyButton.c, copy the following code to it and save it to the User File Folder\OriginC\

subfolder.

void OnButtonClick ()

{

 Worksheet wks = Project. ActiveLayer() ;

 DataRange dr;

 dr. Add(wks, 0, "X") ;

 dr. Add(wks, 1, "Y") ;

 GraphPage gp;

 gp. Create() ;

 GraphLayer gl = gp. Layers(0) ;

 int nn = gl. AddPlot(dr) ;

 gl. Rescale() ;

}

2. Create an OGS file named MyButton.ogs to load the Origin C source file and call function.

Copy the following and save it to the User File Folder.

 Creating and Using Origin C Code

49

[Main]

 if (0 == Run. LoadOC(%Y\ OriginC \ MyButton. c))

 {

 OnButtonClick;

 }

3. In the Origin menu, choose View: Toolbars. In the Customize Toolbar dialog, choose the

Button Groups tab, and click New button to open the Create Button Group dialog. Set

MyButton as the Group Name, keep Number of Buttons as 1, choose the Userdef.bmp file

from the User File Folder as Bitmap, and click the OK button. In the ensuing Save As dialog,

click the Save button to save the MyButton.ini file to the default path.

4. In the Customize Tool dialog, select MyButton item from Groups list, and click to choose the

button from Buttons panel, then click Settings button from Button group to open a Button

Settings dialog. Choose MyButton.ogs as the File Name, type "Main" in for Section Name,

then make sure the following check-boxes are unchecked: Matrix, Excel, Graph, Layout and

Excel. Click OK to close the dialog.

5. Click Export to open the Export Button Group dialog, then click Add File and choose the

above MyButton.c file.

Origin C Programming Guide

50

6. Click Export button, then in the Save As dialog click Save to save the MyButton.OPX file to the

specified folder.

7. Choose menu Tools: Package Manager, and in the dialog that opens, choose File: Open to

open the MyButton.OPX file. Put the script

Run. LoadOC(%Y\ OriginC \ MyButton. c) ;

8. into LabTalk Script: After Installation in gird view to load the Origin C source file. This script

will be run when you drop OPX into Origin to install this application.

51

55 Matrix Books Matrix Sheets and Matrix Objects

5.1 Matrix Books Matrix Sheets and Matrix Objects

The Origin C MatrixPage class is for working with Origin matrix books. Each matrix book contains a
collection of MatrixLayers and each matrix layer contains a collection of MatrixObjects.

This section covers the following topics:

¶ Base Matrix Book Operation

¶ Matrix Sheets

¶ Matrix Objects

5.2 Base Matrix Book Operation

The Origin C MatrixPage class provides methods and properties common to Origin matrix books.
This class is derived from Page class, from which it inherits its methods and properties. And matrix
book has the same data structure level with WorksheetPage in Origin, both are windows. So, they
contain lots of similar operations.

5.2.1 Workbook-like Operations

http://www.originlab.com/doc/OriginC/ref/MatrixPage
http://www.originlab.com/doc/OriginC/ref/MatrixLayer
http://www.originlab.com/doc/OriginC/ref/MatrixObject
http://www.originlab.com/doc/OriginC/guide/Base-Matrix-Book-Operation
http://www.originlab.com/doc/OriginC/guide/Matrix-Sheets
http://www.originlab.com/doc/OriginC/guide/Matrix-Objects
http://www.originlab.com/doc/OriginC/ref/MatrixPage
http://www.originlab.com/doc/OriginC/ref/Page-Class
http://www.originlab.com/doc/OriginC/ref/WorksheetPage

Origin C Programming Guide

52

Both matrix book and workbook are windows, and they share lots of similar operations, and the Basic
Workbook Operation chapter can be referred to.

1. Create New Matrix Book

The same Create method is used.

MatrixPage matPg;

matPg. Create("Origin") ; // create a matrix book using the Orig in

template

2. Open Matrix Book

The difference to open a matrix book by Open method is that the extension of a matrix book is

ogm.

3. Access Matrix Book

There are multiple ways to access an existing matrix book and the methods used are the same

as workbooks. The Project class contains a collection of all the matrix books in the project. The

following example shows how to loop through them.

foreach (MatrixPage matPg in Project. MatrixPages)

 out_str (matPg. GetName()) ; // output matrix book name

4. You can also access a matrix book by passing its index to the Item method of the
Collection class.

MatrixPage matPg;

matPg = Pro ject. MatrixPages . Item(2) ;

if (matPg) // if there is a 3rd matrix book

 out_str (matPg. GetName()) ; // output matrix book name

5. If the matrix book name is known, this matrix book can be accessed by passing its name to
the class constructor.

MatrixPage matP g("MBook1") ;

if (matPg) // if there is a matrix book named "MBook1"

 matPg. SetName("MyBook1") ; // rename the matrix book

6. Save Matrix Book

The methods SaveToFile will be used for saving matrix book as *.ogm file.

MatrixPage matPg ("MBook1") ;

http://www.originlab.com/doc/OriginC/guide/Basic-Workbook-Operation
http://www.originlab.com/doc/OriginC/guide/Basic-Workbook-Operation
http://www.originlab.com/doc/OriginC/ref/Page-Create
http://www.originlab.com/doc/OriginC/ref/Worksheet-Open
http://www.originlab.com/doc/OriginC/ref/Project
http://www.originlab.com/doc/OriginC/ref/Collection-Item
http://www.originlab.com/doc/OriginC/ref/Collection
http://www.originlab.com/doc/OriginC/ref/PageBase-SaveToFile

 Matrix Books Matrix Sheets and Matrix Objects

53

// Save matrix book as OGM file

bool bRet1 = matPg. SaveToFile("D: \ \ " + matPg. GetName() + ".ogm") ;

7. Show or Hide Matrix Book

This is the same as workbook's show and hide by using the Show property derived from

OriginObject class.

8. Activate Matrix Book

To activate a workbook, the method SetShow can be used by passing parameter of value

PAGE_ACTIVATE, which is the same as to activate a workbook.

MatrixPage matPg ("MBook1") ;

matPg. SetShow(PAGE_ACTIVATE) ; // Activate the matrix book

9. Delete Matrix Book

The Destroy method can also be used to destroy (delete) a matrix book.

MatrixPage matPg;

matPg = Project. MatrixPages . Item(0) ; // get first matrix book in

project

if (matPg) // if there is a matrix book

 matPg. Destroy() ; // delete the matrix book

10. Clone/Duplicate Matrix Book

 The Clone method is also used to clone the matrix page.

// Duplica te "MBook1" window with data and style

// Before calling make sure these windows exist

MatrixPage matPage ("MBook1") ;

MatrixPage matPage1 = matPage. Clone() ;

11. Name and Label Matrix Book

To handle with matrix book's short name, Long Name and Comments, Origin C provides the

same ways as handling workbook's, including the inherited methods SetName, SetLongName,

SetComments, and Label property.

http://www.originlab.com/doc/OriginC/ref/OriginObject-Show
http://www.originlab.com/doc/OriginC/ref/OriginObject
http://www.originlab.com/doc/OriginC/ref/PageBase-SetShow
http://www.originlab.com/doc/OriginC/ref/OriginObject-Destroy
http://www.originlab.com/doc/OriginC/ref/Page-Clone
http://www.originlab.com/doc/OriginC/ref/OriginObject-SetName
http://www.originlab.com/doc/OriginC/ref/OriginObject-SetLongName
http://www.originlab.com/doc/OriginC/ref/OriginObject-SetComments
http://www.originlab.com/doc/OriginC/ref/PageBase-Label

Origin C Programming Guide

54

5.2.2 Show Image Thumbnails

To show or hide image thumbnails, the method MatrixPage::ShowImageThumbnails is available.

MatrixPage mp ("tangent") ;

mp.ShowImageThumbnails(true) ; // Pass true to make thumbnail visible

5.3 Matrix Sheets

5.3.1 Matrix Sheets

Origin C provides the MatrixLayer class for working with a matrix sheet.

This section covers the following topics:

¶ Basic Matrix Sheet Operation

¶ Matrix Sheet Data Manipulation

5.3.2 Basic Matrix Sheet Operation

Examples in this section are similar to those found in the Basic Worksheet Operation section,
because matrix sheet and worksheet are at the same level in the Origin object structure.

5.3.2.1 Add New Matrix Sheet

Add a matrix sheet in a matrix book using the AddLayer method.

// Access the matrix book named "MBook1"

MatrixPage mp ("MBook1") ;

// Add a new sheet to the matrix book

int index = mp.AddLayer("New Matrix Sheet") ;

// Access the new matrix sheet

MatrixLayer mlayerNew = mp.Layers(index) ;

5.3.2.2 Activate a Matrix Sheet

To make a matrix sheet in matrix book to be activated, the function set_active_layer can be used.

// Access a matrix sheet by full name

MatrixLayer mLayer ("[MBook1]MSheet1") ;

// Set this matrix sheet to be active

set_active_layer (mLayer) ;

http://www.originlab.com/doc/OriginC/ref/MatrixPage-ShowImageThumbnails
http://www.originlab.com/doc/OriginC/ref/MatrixLayer
http://www.originlab.com/doc/OriginC/guide/Basic-Matrix-Sheet-Operation
http://www.originlab.com/doc/OriginC/guide/Matrix-Sheet-Data-Manipulation
http://www.originlab.com/doc/OriginC/guide/Worksheet-Basic-Operation
http://www.originlab.com/doc/OriginC/ref/Page-AddLayer
http://www.originlab.com/doc/OriginC/ref/set_active_layer

 Matrix Books Matrix Sheets and Matrix Objects

55

5.3.2.3 Delete Matrix Sheet

Use the Destroy method to delete a matrix sheet.

MatrixLayer ly = Project. ActiveLayer() ;

if (ly) // If the active layer is a matrix sheet

 ly. Destroy() ; // Delete the matrix sheet

5.3.2.4 Access Matrix Sheets in Matrix Book

Similar to accessing worksheets in workbook, matrix sheets in matrix book can also be accessed by
the following ways.

1. By full layer name.

// Full matrix sheet name

string strFullName = "[MBook1]MSheet1!" ;

// Construct a matrix sheet instance and attach it to the named

sheet

MatrixLayer matL y1 (strFullName) ;

// Attach an existing matrix sheet instance to the named sheet

matLy2. Attach(strFullName) ;

2. A matrix book constains a collection of matrix layers. Loop through all matrix layers in a

specified matrix book using the foreach statement.

Mat rixPage matPage ("MBook1") ;

foreach (Layer ly in matPage. Layers)

 out_str (ly. GetName()) ;

3. Access a specified matrix sheet by its name or index.

// Assume there are at least two matrix sheets on the page MBook1,

// and they are named MSheet1 and MSheet2 se parately.

MatrixPage matPage ("MBook1") ;

http://www.originlab.com/doc/OriginC/ref/OriginObject-Destroy

Origin C Programming Guide

56

MatrixLayer lyFirst = matPage. Layers(0) ; //by index

MatrixLayer lySecond = matPage. Layers("MSheet2") ; //by name

5.3.2.5 Modify Matrix Sheet Properties

Get and Set Dimensions

In Origin, all matrix objects in matrix sheet share the same dimension (the same number of columns
and rows).

1. To get number of rows and columns in a matrix sheet, you can get the first matrix object of a

matrix sheet, and then use the methods (GetNumCols and GetNumRows) in MatrixObject

class.

// get num rows and cols

MatrixLayer ml = Project. ActiveLayer() ; // Get active matrix sheet

MatrixObject mo = ml. MatrixObjects(0) ; // Get the first matrix

object

int nNumRows = mo. GetNumRows() ; // Get the row number

int nNumCols = mo.GetNumCols() ; // Get the column number

2. To set dimensions of a matrix sheet, you can use the MatrixLayer::SetSize method.

// set num rows and cols

MatrixLayer ml = Project. ActiveLayer() ; // Get active matrix sheet

ml. SetSize(- 1, 5, 5) ; // Set dimensions by 5x5

3. Also, the MatrixObject class has provided the SetSize method for setting dimensions. However,

please note, even this method is defined in MatrixObject, what it changes is the matrix sheet's

dimension, because all matrix objects in the same matrix sheet have the same dimensions.

// set num rows and cols

MatrixLayer ml = Project. ActiveLayer() ; // Get active matrix sheet

MatrixObject mo = ml. MatrixObjects(0) ; // Get the first object

http://www.originlab.com/doc/OriginC/ref/MatrixObject-GetNumCols
http://www.originlab.com/doc/OriginC/ref/MatrixObject-GetNumRows
http://www.originlab.com/doc/OriginC/ref/MatrixObject
http://www.originlab.com/doc/OriginC/ref/MatrixLayer-SetSize
http://www.originlab.com/doc/OriginC/ref/MatrixObject
http://www.originlab.com/doc/OriginC/ref/MatrixObject-SetSize
http://www.originlab.com/doc/OriginC/ref/MatrixObject

 Matrix Books Matrix Sheets and Matrix Objects

57

int nNumRows = 5, nNumCols = 5;

mo.SetSize(nNumRows, nNumCols) ; // Set dimensions by 5x5

4. Matrices have numbered columns and rows which are mapped to linearly spaced X and Y

values. You can use the SetXY method to set the XY mapping coordinates. Note: this method

is available by matrix object, however, the XY mapping is shared by all matrix objects in the

same matrix sheet.

MatrixLayer ml = Project. ActiveLayer() ; // Get active layer

MatrixObject mo = ml. MatrixObjects(0) ; // Get the firs t matrix

object

mo.SetXY(- 10, 20, - 2.3 , 12.4) ; // Set X from - 10 to 20, and Y from

- 2.3 to 12.4

Get and Set Labels

A matrix label includes a Long Name, Units, and Comments for X, Y, Z. The labels of X and Y are for
all matrix objects in the matrix sheet, the label of Z is for each matrix object. The following code
shows how to get and set the labels.

1. Set XY Labels

MatrixPage mp ("MBook1") ;

MatrixLayer ml = mp.Layers(0) ; // the first matrix sheet

Tr ee tr;

tr. Root . Dimensions . X. LongName. strVal = "X Values" ;

tr. Root . Dimensions . X. Unit . strVal = "X Units" ;

tr. Root . Dimensions . X. Comment. strVal = "X Comment" ;

tr. Root . Dimensions . Y. LongName. strVal = "Y Values" ;

tr. Root . Dimensions . Y. Unit . strVal = "Y Units" ;

http://www.originlab.com/doc/OriginC/ref/MatrixObject-SetXY

Origin C Programming Guide

58

tr . Root . Dimensions . Y. Comment. strVal = "Y Comment" ;

// Note, set format on matrix sheet for XY labels.

if (0 == ml. UpdateThemeIDs(tr. Root))

 ml. ApplyFormat(tr, true , true) ;

2. Get XY Labels

MatrixPage mp ("MBook1") ;

MatrixLayer ml = mp.Layers(0) ; // the first matrix sheet

// Note, get XY labels from matrix sheet, not matrix object.

Tree tr;

tr = ml. GetFormat(FPB_ALL, FOB_ALL, TRUE, TRUE) ;

TreeNode trX = tr. Root . Dimensions . X;

if (! trX. LongName. IsEmpty())

 printf("X Long Name: %s\ n" , trX. LongName. strVal) ;

i f (! trX. Unit . IsEmpty())

 printf("X Unit: %s\ n" , trX. Unit . strVal) ;

if (! trX. Comment. IsEmpty())

 printf("X Comment: %s\ n\ n" , trX. Comment. strVal) ;

TreeNode trY = tr. Root . Dimensions . Y;

if (! trY . LongName. IsEmpty())

 printf("Y Long Name: %s\ n" , trY . LongName. strVal) ;

if (! trY . Unit . IsEmpty())

 Matrix Books Matrix Sheets and Matrix Objects

59

 printf("Y Unit: %s\ n" , trY . Unit . strVal) ;

if (! trY . Comment. IsEmpty())

 printf("Y Comment: %s\ n" , trY . Comment. strVal) ;

3. Set Z Labels

MatrixPage mp ("MBook1") ;

MatrixLa yer ml = mp.Layers(0) ; // the first matrix sheet

MatrixObject mo = ml. MatrixObjects(0) ; // the first matrix object

// construct format tree and assign string value to tree nodes

Tree tr;

tr. Root . LongName. strVal = "Z Long Name" ;

tr. Root . Unit . strVal = "Z U nits" ;

tr. Root . Comment. strVal = "Z Comment" ;

// Note, here apply format on matrix object to set Z labels, not

matrix sheet.

if (0 == mo.UpdateThemeIDs(tr. Root)) // add id for each tree node

 mo.ApplyFormat(tr, true , true) ; // do apply

4. Get Z Labels

Matr ixPage mp ("MBook1") ;

MatrixLayer ml = mp.Layers(0) ; // the first matrix sheet

MatrixObject mo = ml. MatrixObjects(0) ;

Tree tr;

tr = mo.GetFormat(FPB_ALL, FOB_ALL, TRUE, TRUE) ;

Origin C Programming Guide

60

printf("Z Short Name: %s\ n" , tr. Root . ShortName . strVal) ;

if (! tr. Root . LongName. IsEmpty()) // if not empty

 printf("Z Long Name is %s\ n" , tr. Root . LongName. strVal) ;

if (! tr. Root . Unit . IsEmpty())

 printf("Z Unit is %s\ n" , tr. Root . Unit . strVal) ;

if (! tr. Root . Comment. IsEmpty())

 printf("Z Comment is %s\ n" , tr. Root . Comment. strVal) ;

Format Matrix Sheet

A matrix sheet can be formatted programmatically using a theme tree.
The example below formats a block of cells in the active matrix sheet to have a blue background and
light-magenta text.

MatrixLayer ml = Project. ActiveLayer() ;

Tree tr ;

tr. Root . CommonStyle . Fill . FillColor . nVal = SYSCOLOR_BLUE;

tr. Root . CommonStyle . Color . nVal = SYSCOLOR_LTMAGENTA;

DataRange dr;

dr. Add(NULL, ml, 2, 2, 5, 3) ; // first row, col, last row, col

if (0 == dr. UpdateThemeIDs(tr. Root))

 dr. ApplyFormat(tr, TRUE, TRUE) ;

Get and Set Matrix Cell Text Color

The next example shows how to get and set the text color of a cell.

// Wrap the 'set' code into a simpler utility function.

bool setCellTextColor (Datasheet & ds, int row, int col, uint color)

{

 Grid grid;

 if (! grid. Attach(ds))

 return false ;

 vector <uint > vTextColor (1) ;

 vTextColor [0] = color;

 return grid. SetCellTextColors(vTextColor, col, row, row) ;

}

// Wrap the 'get' code into a simpler utility function.

bool getCellTextColor (Datashe et & ds, int row, int col, uint & color)

{

 Grid grid;

 if (! grid. Attach(ds))

 Matrix Books Matrix Sheets and Matrix Objects

61

 return false ;

 vector <uint > vTextColor;

 if (! grid. GetCellTextColors(vTextColor, col, row, row))

 return false ;

 color = vTextColor [0] ;

 return t rue ;

}

// Simple function for testing the above utility functions.

void testCellTextColor (int nRow = 3, int nCol = 4)

{

 MatrixLayer ml = Project. ActiveLayer() ;

 // nRow, nCol use LT/GUI indexing, 1 - offset, but OC is 0 - offset

 int row = nRow- 1, col = nCol - 1;

 setCellTextColor (ml, row, col, SYSCOLOR_BLUE) ;

 uint color;

 getCellTextColor (ml, row, col, color) ;

 printf("color == %d\ n" , color) ;

}

5.3.3 Matrix Sheet Data Manipulation

5.3.3.1 Conversion Between Matrix Sheets and Matrix Objects

In Origin, a matrix sheet can hold multiple matrix objects. Using the matobj_move function, you can
split multiple matrix objects into separate matrix sheets, or combine multiple matrix sheets into one
(provided all matrices share the same dimensions).

// This code snippet is to merge the matrix objects in three sheets to

// a new sheet

MatrixPage mp ("MBook1") ; // Matrix book

MatrixLayer ml1 = mp.Layers(1) ; // 2nd sheet

MatrixLayer ml2 = mp.Layers(2) ; // 3rd sheet

MatrixLayer ml3 = mp.Layers(3) ; // 4th sheet

MatrixLayer mlMerge;

mlMerge. Create("Origin") ; // Create a new sheet for merging

MatrixObject m o1 = ml1. MatrixObjects(0) ; // Matrix object in 2nd sheet

MatrixObject mo2 = ml2. MatrixObjects(0) ; // Matrix object in 3rd sheet

MatrixObject mo3 = ml3. MatrixObjects(0) ; // Matrix object in 4th sheet

matobj_move (mo1, mlMerge) ; // Move the matrix object to the end of the

sheet

matobj_move (mo2, mlMerge) ;

matobj_move (mo3, mlMerge) ;

5.4 Matrix Objects

5.4.1 Matrix Objects

Matrix object, which is MatrixObject class, is the basic unit for storing matrix data, and its container is
matrix sheet, that relationship is like column and worksheet. The following pages will show the
practical examples on the operation of matrix object.

http://www.originlab.com/doc/OriginC/ref/matobj_move
http://www.originlab.com/doc/OriginC/ref/MatrixObject

Origin C Programming Guide

62

This chapter covers the following topics:

¶ Basic Matrix Object Operation

¶ Matrix Object Data Manipulation

¶ Converting Matrix to Worksheet

5.4.2 Basic Matrix Object Operation

A matrix sheet can have multiple matrix objects, which share the same dimensions. A matrix object is
analogous to a worksheet column and can be added or deleted, etc. The following sections provide
some practical examples on the basic operations of matrix object.

5.4.2.1 Add or Insert Matrix Object

It allows to set the number of matrix objects in the matrix sheet by using MatrixLayer::SetSize, so to
add matrix objects.

// Set 5 matrix objects in the active m atrix sheet

MatrixLayer ml = Project. ActiveLayer() ;

ml. SetSize(5) ;

The method MatrixLayer::Insert will insert a specified number of matrix objects before the current
matrix object.

// add matrix object to sheet

MatrixLayer ml = Project. ActiveLayer() ; // Get active matrix sheet

int nNum = 1; // the number of added matrix objects

int nPos = - 1; // - 1, add as the end

int nDataType = - 1; // Optional, - 1 as default for double type.

int index = ml. Insert(nNum, nPos, nDataType) ; // Returns the index of the

first one

5.4.2.2 Activate Matrix Object

To activate a matrix object in the matrix sheet, the MatrixLayer::SetActive is available.

MatrixLayer ml = Project. ActiveLayer() ;

ml. SetActive(2) ; // Set 3rd (index is 0 - based) matrix object active

5.4.2.3 Access Matrix Object

To access a matrix object, you can use the collection of MatrixObjects from MatrixLayer.

// Attach to one matrix page by name

MatrixPage matPage ("MBook3") ;

http://www.originlab.com/doc/OriginC/guide/Basic-Matrix-Object-Operation
http://www.originlab.com/doc/OriginC/guide/Matrix-Object-Data-Manipulation
http://www.originlab.com/doc/OriginC/guide/Converting-Matrix-to-Worksheet
http://www.originlab.com/doc/OriginC/ref/MatrixLayer-SetSize
http://www.originlab.com/doc/OriginC/ref/MatrixLayer-Insert
http://www.originlab.com/doc/OriginC/ref/MatrixLayer-SetActive
http://www.originlab.com/doc/OriginC/ref/MatrixLayer-MatrixObjects
http://www.originlab.com/doc/OriginC/ref/MatrixLayer

 Matrix Books Matrix Sheets and Matrix Objects

63

// Attach to the sheet named MSheet1 from matrix page

// Also support get sheet from matrix page by index

MatrixLayer ml1 = matPage. Layers("MSheet1") ;

// Get a mat rix object from sheet by index

MatrixObject mo = ml1. MatrixObjects(0) ;

// The data type of matrix object must keep consistent with the matrix

window

if (FSI_SHORT == mo.GetInternalDataType())

{

 matrix <short >& mat = mo.GetDataObject() ;

}

5.4.2.4 Delete Matrix Object

To delete a specified number of matrix objects from a matrix sheet, you can use the
MatrixLayer::Delete method.

// delete matrix object fr om sheet

MatrixLayer ml = Project. ActiveLayer() ; // Get active matrix sheet

// Delete two matrix objects from the beginning

int nPos = 0;

int nNum = 2;

ml. Delete (nPos, nNum) ;

5.4.2.5 Switch Between Image Mode and Data Mode

The MatrixLayer::SetViewImage method has provided the option for switching between image mode
and data mode of the specified matrix object (by index).

// set image view

Matr ixLayer ml = Project. ActiveLayer() ; // Get active matrix sheet

int nImgIndex = 0;

MatrixObject mo = ml. MatrixObjects(nImgIndex) ;

if (! mo. IsImageView())

{

 BOOL bAllObjs = FALSE;

 ml. SetViewImage(TRUE, bAllObjs, nImgIndex) ; // FALSE for data view

}

5.4.2.6 Get and Set Labels

For each matrix object, you can set Long Name, Comments, and Units. And it actually is to get and
set the Z labels, please refer to the Get and Set Z Labels on Base Matrix Sheet Operation chapter.

5.4.2.7 Data Type and Format

Get and Set Data Type

http://www.originlab.com/doc/OriginC/ref/MatrixLayer-Delete
http://www.originlab.com/doc/OriginC/ref/MatrixLayer-SetViewImage
http://www.originlab.com/doc/OriginC/guide/Basic-Matrix-Sheet-Operation
http://www.originlab.com/doc/OriginC/guide/Basic-Matrix-Sheet-Operation

Origin C Programming Guide

64

Matrix object's internal data types include double, real, short, long, char, text, mixed, byte, ushort,
ulong, and complex, etc. And Origin C provides the GetInternalDataType and SetInternalDataType
methods in MatrixObject class to get and set matrix object internal data type respectively.

// get and set data type

MatrixLayer ml = Project. ActiveLayer() ; // Get active matrix sheet

MatrixObject mo = ml. MatrixObjects(0) ;

if (mo.GetInternal DataType() ! = FSI_BYTE) // Get data type

{

 // OCD_RESTORE to backup the data and

 // attempt to restore it after changing type

 DWORD dwFlags = OCD_RESTORE;

 mo.SetInternalDataType(FSI_BYTE, dwFlags) ; // Set data type

}

Get and Set Data Format

The MatrixObject::GetFormat and MatrixObject::SetFormat are provided for getting and setting the
data format of a matrix object respectively.

// get and set data format

MatrixLayer ml = Project. ActiveLayer() ; // Get active matrix sheet

Matrix Object mo = ml. MatrixObjects(0) ;

int nFormat = mo.GetFormat() ; // Only OKCOLTYPE_NUMERIC(= 0) supported

mo.SetFormat(OKCOLTYPE_NUMERIC) ;

5.4.3 Matrix Object Data Manipulation

5.4.3.1 Set Values by Formula

The DataObject::SetFormula and DataObject::ExecuteFormula methods are used to set
column/matrix values, which is the same as setting values in the Set Values dialog. The example
below shows how to set values to a matrix object by formula.

// new a matrix window

MatrixPage matPage;

matPage. Create("Origin") ;

MatrixLayer ml = matPage. Layers() ; // get active matrix sheet

// set formula and execute

MatrixObject mo = ml. MatrixObjects(0) ; //get first matrixobject

mo.SetFormula("sin(i) + cos(j)") ;

mo.ExecuteFormula() ;

5.4.3.2 Copy Matrix Data

The matobj_copy function is used to copy matrix data.

MatrixLayer mlSrc = Project. ActiveLayer() ; // Get the active matrix sheet

MatrixObject moSrc = mlSrc. MatrixObjects(0) ; // Get the 1st matrix object

in the sheet

MatrixLayer mlDst;

mlDst. Create("Origin") ; // Create a new matrix sheet

http://www.originlab.com/doc/OriginC/ref/DataObject-GetInternalDataType
http://www.originlab.com/doc/OriginC/ref/DataObject-SetInternalDataType
http://www.originlab.com/doc/OriginC/ref/MatrixObject-GetFormat
http://www.originlab.com/doc/OriginC/ref/MatrixObject-SetFormat
http://www.originlab.com/doc/OriginC/ref/DataObject-SetFormula
http://www.originlab.com/doc/OriginC/ref/DataObject-ExecuteFormula
http://www.originlab.com/doc/OriginC/ref/matobj_copy

 Matrix Books Matrix Sheets and Matrix Objects

65

MatrixObject moDst = mlDst. MatrixObjects(0) ; // Get the 1st matrix object

bool bRet = matobj_copy (moDst, moSrc) ; // Copy the active data to the

newly created matrix

5.4.3.3 Math on Matrix Data

To perform mathematical operation on matrix, it always gets the data out of matrix object into a data
matrix, and then do the calculation, and put the data back into matrix object. The math includes
multiplying matrix by constant, dot multiply, dot divide, dot power, cross, cumulative product,
cumulative sum, difference, etc.
The following shows two examples on the matrix operations, one is multiply matrix by constant, and
the other is dot multiply.

Multiply Matrix by Constant

Matr ixLayer ml = Project. ActiveLayer() ; // Get active matrix sheet

MatrixObject mo = ml. MatrixObjects(0) ; // Get the first matrix object

//Get the reference of the internal data object of matrix window.

//Here assume data type of the matrix is double.

matr ix <double >& mat = mo.GetDataObject() ;

// multiply 10 for each data in matrix, this change also effect on window

mat = mat * 10;

Dot Multiply Two Matrix

// Attach to two matrix pages

MatrixPage matPage1 ("MBook1") ;

MatrixPage matPage2 ("MBook2") ;

if (! matPage1 || ! matPage2)

 return ;

// Get the matrix sheet from page by name or index

MatrixLayer matLayer1 = matPage1. Layers("MSheet1") ;

MatrixLayer matLayer2 = matPage2. Layers(1) ; // get the second sheet

if (! matLayer 1 || ! matLayer2)

 return ;

// Get matrix object from matrix sheet by index, name is not allowed.

MatrixObject mo1 = matLayer1. MatrixObjects(0) ;

MatrixObject mo2 = matLayer2. MatrixObjects(0) ;

// Get the reference of the internal data object of matrix wi ndow

matrix <double >& mat1 = mo1. GetDataObject() ;

matrix <double >& mat2 = mo2. GetDataObject() ;

// Prepare new matrix window

MatrixPage matPageNew;

matPageNew. Create("Origin") ;

MatrixLayer mlNew = matPageNew. Layers(0) ;

MatrixObject moNew = mlNew. MatrixObjec ts(0) ;

matrix <double >& matNew = moNew.GetDataObject() ;

// Copy values from mat1 to new matrix

matNew = mat1;

http://www.originlab.com/doc/OriginC/ref/matrixbase-DotMultiply
http://www.originlab.com/doc/OriginC/ref/matrixbase-DotDivide
http://www.originlab.com/doc/OriginC/ref/matrixbase-DotPower
http://www.originlab.com/doc/OriginC/ref/matrixbase-Cross
http://www.originlab.com/doc/OriginC/ref/matrixbase-CumulativeProduct
http://www.originlab.com/doc/OriginC/ref/matrixbase-CumulativeSum
http://www.originlab.com/doc/OriginC/ref/matrixbase-Difference

Origin C Programming Guide

66

// Multiply two matrices element by element and put result

// to a newly created matrix window

matNew. DotMultiply(mat2) ;

5.4.3.4 Conversion between Matrix Object and Vector

The methods matrixbase::GetAsVector and matrixbase::SetByVector can be used to convert between
matrix object and vector.

// To vector

MatrixLayer ml = Project. ActiveLayer() ; // Active matrix sheet

MatrixObject mo = ml. MatrixObjects(0) ; // The 1st matrix object

matrixbase &mb = mo.GetDataObject() ; // Get data from matrix object

vector vb;

mb.GetAsVector(vb) ; // Convert the matrix data into vector

// From vector

MatrixLayer ml1;

ml1. Create("Origin") ; // Create a matrix sheet

MatrixObject mo1 = ml1. Matr ixObjects(0) ; // Get matrix object

matrixbase &mb1 = mo1. GetDataObject() ; // Get data object

mb1. SetSize(2, 3) ; // Set size 2 rows x 3 columns

vector v = { 1, 2, 3, 4, 5, 6} ; // Vector data

// Set vector data to matrix object

// First row: 1, 2, 3

// Se cond row: 4, 5, 6

int iRet = mb1. SetByVector(v) ;

5.4.3.5 Manipulate Matrix Object with Complex Values

Origin C provides a set of methods in matrixbase class for handling complex, including making a
complex matrix from two real matrices, getting real and imaginary, getting phase and amplitude,
calculating conjugate, etc.
The following code is used to set a matrix object as complex matrix with two real matrices data, and
then get its real, imaginary, phase, and amplitude into separate matrix objects, and then use the
conjugate to replace the original complex matrix object.

void MatrixObject_Complex_EX ()

{

 // Original data for real

 matrix mR =

 {

 { 2, 2, 2, 0} ,

 { 0, 1, 99, 99}

 } ;

 // Original data for imaginary

 matrix mI =

 {

 { 3, - 3, 0, 3} ,

 { 0, 99, 1, 99}

 } ;

 matrix <complex > mC;

 // Create a complex data

 int iRet = mC.MakeComplex(mR, mI) ;

 if (iRet == 0)

http://www.originlab.com/doc/OriginC/ref/matrixbase-GetAsVector
http://www.originlab.com/doc/OriginC/ref/matrixbase-SetByVector
http://www.originlab.com/doc/OriginC/ref/matrixbase
http://www.originlab.com/doc/OriginC/ref/matrixbase-MakeComplex
http://www.originlab.com/doc/OriginC/ref/matrixbase-MakeComplex
http://www.originlab.com/doc/OriginC/ref/matrixbase-GetReal
http://www.originlab.com/doc/OriginC/ref/matrixbase-GetImaginary
http://www.originlab.com/doc/OriginC/ref/matrixbase-GetPhase
http://www.originlab.com/doc/OriginC/ref/matrixbase-GetAmplitude
http://www.originlab.com/doc/OriginC/ref/matrixbase-Conjugate

 Matrix Books Matrix Sheets and Matrix Objects

67

 {

 // Create a new matrix sheet for complex data

 MatrixLayer ml;

 ml. Create("Origin") ;

 MatrixObject mo = ml. MatrixObjects(0) ;

 ml. SetInternalData(FSI_COMPLEX) ;

 matrixbase &mb = mo.GetDataObject() ;

 mb = mC;

 // Get real part

 matrix mReal;

 mb.GetReal(mReal) ;

 // Get imaginary part

 matrix mImg;

 mb.GetImaginary(mImg) ;

 // Get phase

 matrix mPha;

 mb.GetPhase(mPha) ;

 // Get amplitude

 matrix mAmp;

 mb.GetAmplitude(mAmp) ;

 // Create new matrix sheet for the results

 MatrixLayer mlRes;

 mlRes. Create("Origin") ;

 // Set 4 matrix objects, the same size as the matrix

 mlRes. SetSize(4, mb. GetNumRows() , mb. GetNumCols()) ;

 MatrixObject moReal = mlRes. MatrixObjects(0) ;

 MatrixObject moImg = mlRes. MatrixObjects(1) ;

 MatrixObject moPha = mlRes. MatrixObjects(2) ;

 MatrixObject moAmp = mlRes. MatrixObjects(3) ;

 matrixbase &mbReal = moReal. GetDataObject () ;

 matrixbase &mbImg = moImg. GetDataObject() ;

 matrixbase &mbPha = moPha. GetDataObject() ;

 matrixbase &mbAmp = moAmp.GetDataObject() ;

 mbReal = mReal; // Set real part to matrix object

 mbImg = mImg; // Set imaginary part to matrix object

 mbPha = mPha; // Set phase to matrix object

 mbAmp = mAmp; // Set amplitude to matrix object

 // Use the conjugate to replace the original complex matrix

 mb.Conjugate() ;

 }

}

5.4.3.6 Transform Matrix Object Data

Origin C contains a set of methods in matrixbase for the matrix transformation, such as flip a matrix
horizontally or vertically, rotate a matrix, shrink a matrix, transpose a matrix, etc.

MatrixLayer ml = Project. ActiveLayer() ;

MatrixObject mo = ml. Mat rixObjects(0) ;

matrixbase &mb = mo.GetDataObject() ;

mb.FlipHorizontal() ; // Flip horizontally

mb.FlipVertical() ; // Flip vertically

http://www.originlab.com/doc/OriginC/ref/matrixbase-FlipHorizontal
http://www.originlab.com/doc/OriginC/ref/matrixbase-FlipHorizontal
http://www.originlab.com/doc/OriginC/ref/matrixbase-FlipVertical
http://www.originlab.com/doc/OriginC/ref/matrixbase-Rotate
http://www.originlab.com/doc/OriginC/ref/matrixbase-Shrink
http://www.originlab.com/doc/OriginC/ref/matrixbase-Transpose

Origin C Programming Guide

68

mb.Rotate(90) ; // Rotate 90 degrees counter - clockwise, need to be

multiple of 90

mb.Shrink(2, 2) ; // Shrink by factor of 2 for both row and column

mb.Transpose() ; // Transpose

5.4.4 Converting Matrix to Worksheet

You may need to re-organize your data by converting from matrix to worksheet, or vice versa, for
certain analysis or graphing needs. This page provides information and examples of converting
matrix to worksheet, and please refer to Converting Worksheet to Matrix for the "vice versa" case.

5.4.4.1 Matrix to Worksheet

To convert a matrix object data to worksheet, you can firstly get the data in matrix object out to a data
matrix, and then use the CopyTo method defined in class.
Here is the example on how to convert the whole matrix object directly into worksheet.

// Convert the active matrix object's data into a newly created worksheet

direc tly,

// without tranposing, and with setting the column type the same as matrix

MatrixLayer ml = Project. ActiveLayer() ; // Active matrix sheet

MatrixObject mo = ml. MatrixObjects(0) ; // Get the first matrix object

matrixbase &mb = mo.GetDataObject() ; // Get the data from matrix object

Worksheet wks;

wks. Create("Origin") ; // Create a new worksheet

mb.CopyTo(wks, 0, 0, - 1, - 1, 0, 0, FALSE, TRUE) ; // Convert the data to

worksheet

http://www.originlab.com/doc/OriginC/guide/Converting-Worksheet-to-Matrix
http://www.originlab.com/doc/OriginC/ref/matrixbase-CopyTo

69

66 Workbooks Worksheets and Worksheet Columns

6.1 Workbooks Worksheets and Worksheet Columns

The Origin C WorksheetPage class is for working with Origin workbooks. Each workbook contains a
collection of Worksheets and each worksheet contains a collection of Columns.

This section covers the following topics:

¶ Workbooks

¶ Worksheet Columns

¶ Worksheets

6.2 Workbooks

6.2.1 Workbooks

The Origin C WorksheetPage class provides methods and properties common to Origin workbooks.
This class is derived from Page class, from which it inherits its methods and properties.

http://www.originlab.com/doc/OriginC/ref/WorksheetPage
http://www.originlab.com/doc/OriginC/ref/Worksheet-Class
http://www.originlab.com/doc/OriginC/ref/Column-Class
http://www.originlab.com/doc/OriginC/guide/Workbooks
http://www.originlab.com/doc/OriginC/guide/Worksheet-Columns
http://www.originlab.com/doc/OriginC/guide/Worksheets
http://www.originlab.com/doc/OriginC/ref/WorksheetPage
http://www.originlab.com/doc/OriginC/ref/Page-Class

Origin C Programming Guide

70

This chapter covers the following topics:

¶ Basic Workbook Operation

¶ Workbook Manipulation

6.2.2 Basic Workbook Operation

6.2.2.1 Create New Workbook

The Create method is used for creating new workbooks.

// cre ate a hidden workbook using the STAT template

WorksheetPage wksPg;

wksPg. Create("STAT" , CREATE_HIDDEN) ;

6.2.2.2 Open Workbook

If the workbook with data is saved (as extension of ogw), it can be opened by the Open method.

Worksheet wks; // The Open method belongs to Worksheet

string strOGW = "D: \ \ Book1.ogw" ; // Path of the workbook

wks. Open(strOGW) ; // Open the workbook

6.2.2.3 Access Workbook

There are multiple ways to access an existing workbook. The Project class contains a collection of all
the workbooks in the project. The following example shows how to loop through them.

f oreach (WorksheetPage wksPg in Project. WorksheetPages)

 out_str (wksPg. GetName()) ; // output workbook name

You can also access a workbook by passing its index to the Item method of the Collection class.

WorksheetPage wksPg;

wksPg = Project. WorksheetPages . Item(2) ;

if (wksPg) // if there is a 3rd workbook

 out_str (wksPg. GetName()) ; // output workbook name

If the workbook name is known, this workbook can be accessed by passing its name to the class
constructor.

WorksheetPage wksPg ("Book1") ;

if (wksPg) // if there is a workbook named "Book1"

 wksPg. SetName("MyBook1") ; // rename the workbook

6.2.2.4 Save Workbook

http://www.originlab.com/doc/OriginC/guide/Basic-Workbook-Operation
http://www.originlab.com/doc/OriginC/guide/Workbook-Manipulation
http://www.originlab.com/doc/OriginC/ref/Page-Create
http://www.originlab.com/doc/OriginC/ref/Worksheet-Open
http://www.originlab.com/doc/OriginC/ref/Project
http://www.originlab.com/doc/OriginC/ref/Collection-Item
http://www.originlab.com/doc/OriginC/ref/Collection

 Workbooks Worksheets and Worksheet Columns

71

Origin allows you to save a workbook with data to a file (*.ogw), or as a template without data (*.otw),
and for the workbook with analysis, it is able to be saved as an analysis template (*.ogw). And
methods SaveToFile and SaveTemplate are used for saving workbook as *.ogw and *.otw files
respectively.

WorksheetPage wksPg ("Book1") ;

// Save workbook as OGW file

bool bRet1 = wksPg. SaveToFile("D: \ \ " + wksPg. GetName() + ".ogw") ;

// Save workbook as OTW template

bool bRet2 = wksPg. SaveTempl ate("D: \ \ " + wksPg. GetName() + ".otw") ;

6.2.2.5 Show or Hide Workbook

The WorksheetPage class inherits the Show property from OriginObject class to show or hide itself.

WorksheetPage wksPg ("Book1") ;

wksPg. Show = false ; // Hide the workbook. If true, show the workbook

6.2.2.6 Activate Workbook

To activate a workbook, the method SetShow can be used by passing parameter of value
PAGE_ACTIVATE.

WorksheetPage wksPg ("Book1") ;

wksPg. SetShow(PAGE_ACTIVATE) ; // Activate the workbook

// More operations can be done by passing different values, such as

// wksPg.SetShow(PAGE_HIDDEN); // Hide the workbook

// wksPg.SetSh ow(PAGE_MINIMIZED); // Minimize the workbook

// wksPg.SetShow(PAGE_MAXIMIZED); // Maximize the workbook

6.2.2.7 Delete Workbook

All of Origin C's internal classes are derived from the OriginObject class. This class has a Destroy
method that is used to destroy the object. Calling this method on a workbook will destroy it, together
with all the sheets in the workbook, and all the columns in each sheet.

WorksheetPage wksPg;

wksPg = Project. WorksheetPages . Item(0) ; // get first workbook in project

if (wksPg) // if there is a workbook

 wksPg. Destroy() ; // delete the workbook

6.2.2.8 Clone/Duplicate Workbook

The WorksheetPage class (for a Workbook) is derived from the Page class. This class has a Clone
method that is used to clone the source page.

// Duplicate "Book1" window with data and style

// Before calling make sure these windows exist

WorksheetPage wksPage ("Book1") ;

WorksheetPage wksPage1 = wksPage. Clone() ;

6.2.2.9 Name and Label Workbook

http://www.originlab.com/doc/OriginC/ref/PageBase-SaveToFile
http://www.originlab.com/doc/OriginC/ref/PageBase-SaveTemplate
http://www.originlab.com/doc/OriginC/ref/WorksheetPage
http://www.originlab.com/doc/OriginC/ref/OriginObject-Show
http://www.originlab.com/doc/OriginC/ref/OriginObject
http://www.originlab.com/doc/OriginC/ref/PageBase-SetShow
http://www.originlab.com/doc/OriginC/ref/OriginObject
http://www.originlab.com/doc/OriginC/ref/OriginObject-Destroy
http://www.originlab.com/doc/OriginC/ref/WorksheetPage
http://www.originlab.com/doc/OriginC/ref/Page-Class
http://www.originlab.com/doc/OriginC/ref/Page-Clone

Origin C Programming Guide

72

For a workbook, there will be short name, Long Name, and Comments. The inherited methods,
SetName, SetLongName, SetComments, which are defined in OriginObject class, can be used to
control workbook's name (both short name and Long Name) and comments.

WorksheetPage wksPg ("Book1") ;

if (wksPg)

{

 wksPg. SetName("MyBook") ; // Rename workbook

 wksPg. SetLongName("This is Long Name" , false) ; // Set Long Name

 wksPg. SetComments("Comments") ; // Set Comments

}

Also, Label property is provided for changing Long Name. And TitleShow property is for how to show
short name and Long Name on the workbook's title.

WorksheetPage wksPg1 ("Book2") ;

if (wksPg1)

{

 wksPg1. Label = "My Label" ; // Set Label (also called Long Name)

 // Show only Label on workbook's title

 wksPg1. TitleShow = WIN_TITLE_SHOW_LABEL;

 // Show only short name on workbook's title

 // wksPg1.TitleShow = WIN_TITLE_SHOW_NAME;

 // Show both short name and Label on workbook's title

 // wksPg1.TitleShow = WIN_TITLE_SHOW_BOTH;

}

6.2.3 Workbook Manipulation

Origin provides the capabilities for workbook manipulation by using Origin C, such as merging,
splitting, etc.

6.2.3.1 Merge Workbooks

To merge many workbooks into one workbook, actually it is to copy the worksheets from the source
workbooks to the target workbook. To add worksheet to a workbook, the AddLayer method is
available.
The following example is to merge all workbooks in current folder to the newly created workbook.

Worksh eetPage wksPgTarget;

wksPgTarget. Create("Origin") ; // Create the target workbook

Folder fld = Project. ActiveFolder() ; // Get the active/current folder

foreach (PageBase pb in fld. Pages)

{ // Loop all Pages in folder

 WorksheetPage wksPgSource = pb; // Convert the Page to

WorksheetPage

 // If convert failed, that is to say the Page is not WorksheetPage

 if (! wksPgSource)

 {

 continue ; // Next Page

 }

 // Skip the target workbook

 if (wksPgTarget. GetName() == wksPgSource. GetName())

 {

 continue ;

http://www.originlab.com/doc/OriginC/ref/OriginObject-SetName
http://www.originlab.com/doc/OriginC/ref/OriginObject-SetLongName
http://www.originlab.com/doc/OriginC/ref/OriginObject-SetComments
http://www.originlab.com/doc/OriginC/ref/OriginObject
http://www.originlab.com/doc/OriginC/ref/PageBase-Label
http://www.originlab.com/doc/OriginC/ref/PageBase-TitleShow
http://www.originlab.com/doc/OriginC/ref/Page-AddLayer

 Workbooks Worksheets and Worksheet Columns

73

 }

 // Loop all worksheet in workbook for merging

 foreach (Layer lay in wksPgSource. Layers)

 {

 Worksheet wks = lay; // Get the worksheet

 // Add the worksheet to target workbook

 wksPgTarget. AddLayer(wks, 0, false) ;

 }

 // If not to keep the source workbook, destroy it

 wksPgSource. Destroy() ;

}

6.2.3.2 Split Workbook

The example above is merging multiple workbooks into one workbook. It is also able to split a
workbook into multiple workbooks, which contain single worksheet.

WorksheetPage wksPgSource ("Book1") ; // Workbook with multiple worksheets

// Loop over all worksheets

foreach (Layer lay in wksPgSource. Layers)

{

 Worksheet wks = lay; // Get worksheet

 WorksheetPage wksPgTarget;

 wksPgTarget. Create("Origin") ; // Create ne w workbook

 wksPgTarget. AddLayer(wks) ; // Add worksheet to the new workbook

 wksPgTarget. Layers(0) . Destroy() ; // Delete the first worksheet

}

6.3 Worksheet Columns

6.3.1 Worksheet Columns

Origin C provides the Column class for handling the columns in a worksheet. A Column object is
usually used to control the style, format and data type of the dataset, which is contained in the
column. Example codes, demonstrating how to use the Column class, are provided in this sub-
chapter.

This section covers the following topics:

¶ Worksheet Column Operation

¶ Worksheet Column Data Manipulation

6.3.2 Worksheet Column Operation

To perform operation on worksheet column, you can use Column class or Worksheet class.

6.3.2.1 Add or Insert Column

http://www.originlab.com/doc/OriginC/ref/Column-Class
http://www.originlab.com/doc/OriginC/guide/Worksheet-Column-Operation
http://www.originlab.com/doc/OriginC/guide/Worksheet-Column-Data-Manipulation
http://www.originlab.com/doc/OriginC/ref/Column-Class
http://www.originlab.com/doc/OriginC/ref/Worksheet-Class

Origin C Programming Guide

74

To add a column to the end of the worksheet, the AddCol method in Worksheet class is available,
and also the InsertCol for inserting a column before a specified position.

// Add column with default name

int nColIndex = wks. AddCol() ;

// Add column with namestring strName;

int nColIndex = wks. AddCol("AA" , strName) ; // Returns the index of column

// If the column named AA already exist, name enumeration automatically

out_str (strName) ;

Column col (wks, nColIndex) ; // Construct column object by column index

// Insert a new column as the first column

int nPos = 0; // The position to insert

string strNewCr eated; // the real name of the new column

// The name will be auto enumerated if name MyCol already existed

if (wks. InsertCol(nPos, "MyCol" , strNewCreated))

{

 printf("Insert column successfully, name is %s\ n" , strNewCreated) ;

}

6.3.2.2 Delete Column

The Worksheet::DeleteCol method is capable of removing a column from worksheet.

// De lete the column by index

wks. DeleteCol(0) ;

6.3.2.3 Rename and Label Column

To rename (short name) a column, Origin provides the SetName method.

Column col = wks.Columns(0); // Get the 1st column in worksheet

BOOL bRet = col. SetName("MyNewName") ; // Rename the column

 Worksheet column labels support Long Name, Units, Comments, Parameters and User-Defined
labels. We can use Origin C code to show/hide labels or to add text to the specified column label.

Worksheet wks;

wks. Create() ;

Grid gg;

gg. Attach(wks) ;

// if Parameters lable not show, show it.

bool bShow = gg. IsLabelsShown(RCLT_PARAM) ;

if (! bShow)

 gg. ShowLabels(RCLT_PARAM) ;

wks. Columns(0) . SetLon gName("X Data") ;

wks. Columns(1) . SetLongName("Y Data") ;

wks. Columns(0) . SetComments("This is a test") ;

http://www.originlab.com/doc/OriginC/ref/Worksheet-AddCol
http://www.originlab.com/doc/OriginC/ref/Worksheet-Class
http://www.originlab.com/doc/OriginC/ref/Worksheet-InsertCol
http://www.originlab.com/doc/OriginC/ref/Worksheet-DeleteCol
http://www.originlab.com/doc/OriginC/ref/OriginObject-SetName

 Workbooks Worksheets and Worksheet Columns

75

wks. Columns(0) . SetUnits("AA") ;

wks. Columns(1) . SetUnits("BB") ;

// put text to Parameters label for two columns.

wks. Columns(0) . SetExtendedLabel("Param A" , RCLT_PARAM) ;

wks. Columns(1) . SetExtendedLabel("Param B" , RCLT_PARAM) ;

RCLT_PARAM is the type of Parameters column label, other types see
OriginC\system\oc_const.h file ROWCOLLABELTYPE enum.

6.3.2.4 Hide/Unhide Column

To hide/unhide column(s), you can use the Workhseet::ShowCol method.

wks. ShowCol(1, 1, false) ; // to hide column 1.

6.3.2.5 Move and Swap Columns

Move Column To move columns or swap columns, the super class of Worksheet class, Datasheet
class, provides the method MoveColumns and [[OriginC:Datasheet-SwapColumns|SwapColumns]
respectively for such purposes.

// Move three columns - starting with column 5 - to the first column

// Example requires first worksheet in project with at least 7 columns

Worksheet wks = Project. ActiveLayer() ;

if (wks)

 wks. MoveColumns(4, 3, MOVE_COL_TO_FIRST) ;

// Reverse the column order in the active worksheet

for (int ii = 1; ii <= wks. GetNumCols() / 2 ; ii ++)

 wks. SwapColumns(ii - 1, wks. GetNumCols() - ii) ;

6.3.2.6 Add Sparkline to Column

To add sparkline to column(s), Origin C provides the wks_set_show_labels with the
RCLT_SPARKLINE label type.

// Configure active sheet to show Sampling Inverval and SparkLine in order

// append to the curernt Labels

Worksheet wks = Project. ActiveLayer() ;

vector <int > vn = { RCLT_SAMPLE_RATE, RCLT_SPARKLINE} ;

wks_add_show_labels (wks, vn, false) ;

6.3.2.7 Data Type, Format, SubFormat

Get & Set Data Type

Worksheet wks = Project. ActiveLayer() ;

Column col (wks, 0) ;

// Get column type, can be:

// 0: Y

http://www.originlab.com/doc/OriginC/ref/Worksheet-ShowCol
http://www.originlab.com/doc/OriginC/ref/Worksheet-Class
http://www.originlab.com/doc/OriginC/ref/Datasheet
http://www.originlab.com/doc/OriginC/ref/Datasheet-MoveColumns
http://www.originlab.com/doc/OriginC/ref/wks_set_show_labels

Origin C Programming Guide

76

// 1: None

// 2: Y Error

// 3: X

// 4: L

// 5: Z

// 6: X Error

int nType = col. GetType() ;

out_int ("Type: " , nType) ;

// Set column type. See more define OKDATAOBJ_DESIGNATION_* in oc_const.h

col. SetType(OKDATAOBJ_DESIGNATION_Z) ;

Get & Set Data Format

// Get and set data format

// The default format of column is OKCOLTYPE_TEXT_NUMERIC.

// Set the format of column to Date

if (OKCOLTYPE_DATE ! = col. GetFormat())

{

 col. SetFormat(OKCOLTYPE_DATE) ;

}

Get & Set Data Subformat

// Get and set data subformat

// The options of the sub format will be different according to the above

format,

// numeric, date, time and so on.

if (LDF_YYMMDD ! = col. GetSubFormat())

{

 col. SetSubFormat(LDF_YYMMDD) ;

}

6.3.3 Worksheet Column Data Manipulation

6.3.3.1 Basic Arithmetic Operation

To perform the base arithmetic operation on the column data, you can first get the column data into
vector, and then operate on the corresponding vectors.

// Get data from the 1st and 2nd columns

// Then add two columns together,

// and put results to 3rd column

Worksheet wks = Project. ActiveLayer() ;

if (! wks)

{

 return ;

}

Column col1 = wks. Columns(0) ; // 1st column

Column col2 = wks. Columns(1) ; // 2nd column

Column col3 = wks. Columns(2) ; // 3rd column

vectorbase &v1 = col1. GetDataObject() ; // Get data object

vectorbase &v2 = col2. GetDataObject() ;

vectorbase &v3 = col3. GetDataObje ct() ;

v3 = v1 + v2; // Add together

 Workbooks Worksheets and Worksheet Columns

77

6.3.3.2 Set Value by Formula

 The DataObject::SetFormula and DataObject::ExecuteFormula methods are used to set
column/matrix values, which is the same as setting values in the Set Values dialog. The following
example is of creating a worksheet with three columns, and then setting values by a formula to each
column.

Worksheet wks;

wks. Create("origin" , CREATE_VISIBLE) ;

wks. AddCol() ;

// set value to the first column

Column colA;

colA. Attach(wks, 0) ;

colA. SetFormula("5*(i - 1)") ;

colA. ExecuteFormula() ;

// for the next two columns we will set Recalculate = Auto

Column colB;

colB. Attach(wks, 1) ;

colB. SetFormula("sin(4*col(A)*pi/1 80)" , AU_AUTO) ;

colB. ExecuteFormula() ;

// using declared variables in Before Formula Script

Column colC;

colC. Attach(wks, 2) ;

string strExpression = "cos(Amp*x*pi/180)" ;

string strBeforeScript = "double Amp=4.5;" + " \ r \ n" + "range x=col(A);" ;

string strF ormula = strExpression + STR_COL_FORMULAR_SEPARATOR +

strBeforeScript;

colC. SetFormula(strFormula, AU_AUTO) ;

colC. ExecuteFormula() ;

6.3.3.3 Sort Column

To sort a specified column, first get the column's data into a vector, and then put the data back after
sorting the vector. By using a vector reference for getting data object from column, the vector will
attach to the column automatically, and the data update on vector will map back to column.

Worksheet wks = Project. ActiveLayer() ;

if (! wks)

{

 return ;

}

Column co l1 = wks. Columns(0) ; // 1st column

vectorbase &v1 = col1. GetDataObject() ; // Get data object using reference

v1. Sort(SORT_DESCENDING) ; // Sort descendingly

6.3.3.4 Reverse Column

To reverse column's data, first you can get the column data into a vector, and then reverse the data
in vector and put them back.

// Reverse the 1st column's data

Worksheet wks = Project. ActiveLayer() ;

if (! wks)

http://www.originlab.com/doc/OriginC/ref/DataObject-SetFormula
http://www.originlab.com/doc/OriginC/ref/DataObject-ExecuteFormula

Origin C Programming Guide

78

{

 return ;

}

Column col1 = wks. Columns(0) ; // 1st column

vectorbase &v1 = col1. GetDataObject() ; // Get data object

vector <uint > vnIndices; // vector for reverse indices

vnIndices. Data(v1. GetSize() - 1, 0, - 1) ; // Reverse indices

v1. Reorder(vnIndices) ; // Reverse the data

6.3.3.5 Get & Set Data from Column

Get & Set Numeric Data Values from Column

// Attach to the first column, make sure the format of the column is

// Text & Numeric(default) or Numeric.

Column col (wks, 0) ;

// Here assume the data type of the column is double.

// Other numeric data type supported, for example, int, short, complex.

vector <double >& vec = col. GetDataObject() ;

// Append 100 at the end of this column

vec. Add(100) ;

Or we can use a Dataset object to get and set numeric data for a column. For example:

Worksheet wks = Project. ActiveLayer() ;

Dataset ds (wks, 1) ;

for (int ii =0; ii <ds. GetSize() ; ii ++)

 out_double ("" , ds [ii]) ;

Get & Set String Values from Column

Column col (wks, 0) ; // Attach to the first column

// Get string array from column

vector <string > vs;

col. GetStringArray(vs) ;

// Put string array back to column

vs. Add("test") ;

col. PutStringArray(vs) ;

Get & Set Date and Time Data from Column

 If the column's format is Date or Time, the data you get from this column will be Julian date/time
data, but not the display-date-time-format string.

// Get active worksheet

Worksheet wks = Project. ActiveLayer() ;

Column col1 (wks, 0) ; // The first column

Column col2 (wks, 1) ; // The second column

// Check if the first column's format is Date or Time, or not

http://www.originlab.com/doc/OriginC/ref/Dataset

 Workbooks Worksheets and Worksheet Columns

79

if (col1. GetFormat() == OKCOLTYPE_DATE || col1. GetFormat() ==

OKCOLTYPE_TIME)

{

 // Get data from 1st column, v 1 holds Julian data

 vector &v1 = col1. GetDataObject() ;

 vector &v2 = col2. GetDataObject() ; // Get data from 2nd column

 v2 = v1; // Set 1st column's Julian data to 2nd column

 col2. SetFormat(OKCOLTYPE_DATE) ; // Set 2nd column to be Date column

 // Set display format to be MM/dd/yyyy HH:mm:ss

 col2. SetSubFormat(LDF_SHORT_AND_HHMMSS_SEPARCOLON) ;

}

6.4 Worksheets

6.4.1 Worksheets

Origin C provides the Worksheet class for working with the worksheets in a WorksheetPage. While a
workbook contains a collection of worksheets, a worksheet contains a collection of Columns. The
Worksheet class is derived from the Layer class.

This section covers the following topics:

¶ Worksheet Basic Operation

¶ Worksheet Data Manipulation

¶ Converting Worksheet to Matrix

¶ Virtual Matrix

6.4.2 Worksheet Basic Operation

The basic worksheet operations include adding worksheet to workbook, activating a worksheet,
getting and setting worksheet properties, deleting worksheet, etc. Some practical examples are
provided below.

6.4.2.1 Add New Worksheet

Add a worksheet to a workbook using the AddLayer method.

// Access the workbook named "Book1"

WorksheetPage wksPage ("Book1") ;

// Add a new sheet to the workbook

int index = wksPage. AddLayer("New Sheet") ;

// Access the new worksheet

http://www.originlab.com/doc/OriginC/ref/Worksheet-Class
http://www.originlab.com/doc/OriginC/ref/WorksheetPage
http://www.originlab.com/doc/OriginC/ref/Column-Class
http://www.originlab.com/doc/OriginC/ref/Worksheet-Class
http://www.originlab.com/doc/OriginC/ref/Layer
http://www.originlab.com/doc/OriginC/guide/Worksheet-Basic-Operation
http://www.originlab.com/doc/OriginC/guide/Worksheet-Data-Manipulation
http://www.originlab.com/doc/OriginC/guide/Converting-Worksheet-to-Matrix
http://www.originlab.com/doc/OriginC/guide/Virtual-Matrix
http://www.originlab.com/doc/OriginC/ref/Page-AddLayer

Origin C Programming Guide

80

Worksheet wksNew = wksPage. Layers(index) ;

6.4.2.2 Activate a Worksheet

Workbook is an Origin object that contains worksheets. To make a worksheet in workbook to be
activated, the function set_active_layer can be used.

// Access a worksheet by full name

Worksheet wks ("[Book1]Sheet1") ;

// Set this worksheet to be active

set_active_ layer (wks) ;

6.4.2.3 Delete Worksheet

 Use the Destroy method to delete a worksheet.

Worksheet wks = Project. ActiveLayer() ;

if (wks) // If the active layer is a worksheet

 wks. Destroy() ; // Delete the worksheet

6.4.2.4 Access Worksheets in Workbook

There are two ways to access a worksheet by its name. You can pass the layer's full name to the
constructor or to the Attach method. The layer's full name contains the page name in square brackets
followed by the layer name.

// Assume wksPage is a val id WorksheetPage holding the sheet we want to

access.

string strFullName = okutil_make_book_sheet_string (wksPage. GetName() ,

"Sheet1") ;

// If book and sheet name are known, the string can be constructed

manually.

string strFullName = okutil_make_book_shee t_string ("Book5" , "Sheet1") ;

With the full layer name we can now access the worksheet.

// Construct a new Worksheet instance and attach it to the named sheet.

Worksheet wks1 (strFullName) ;

// Attach an existing Worksheet instance to the named sheet.

wks2 . Attach(strFullName) ;

A workbook contains a collection of worksheets. You can loop through all the worksheets in a
specified workbook using the foreach statement.

WorksheetPage wksPage ("Book1") ;

foreach (Layer wks in wksPage. Layers)

 out_str (wks. GetName()) ;

You can also access a specified worksheet by its name or index.

//assume there are at least two worksheets on the page Book1,

http://www.originlab.com/doc/OriginC/guide/Workbooks
http://www.originlab.com/doc/OriginC/ref/set_active_layer
http://www.originlab.com/doc/OriginC/ref/OriginObject-Destroy

 Workbooks Worksheets and Worksheet Columns

81

//and they are named Sheet1 and Sheet2 separately.

WorksheetPage wksPage ("Book 1") ;

Worksheet wksFirst = wksPage. Layers(0) ; //by index

Worksheet wksSecond = wksPage. Layers("Sheet2") ; //by name

6.4.2.5 Reorder Worksheets

The Reorder method allows you to change the position of a worksheet in a workbook.

// This example assumes the active workbook contains two sheets

// Get the active page from the active layer

WorksheetPage wksPage;

Workshe et wks = Project. ActiveLayer() ;

if (wks)

 wksPage = wks. GetPage() ;

// Move the 2nd worksheet to the 1st position

if (wksPage. Reorder(1, 0))

 out_str ("Reorder sheets successfully") ;

6.4.2.6 Copy Worksheet

The AddLayer method is used to copy a layer from one page to another, and can be used with
GraphPage, WorksheetPage or MatrixPage.
The following example shows how to drag all worksheets from the active folder to merge into the
active workbook.

WorksheetPage wksPageDest = Project. Pages() ;

if (! wksPageDest) // no active window or active window is not a worksheet

 return ;

bool bKeepSourceLayer = false ; // dele te source layer after copying

Folder fld = Project. ActiveFolder() ;

foreach (PageBase pb in fld. Pages)

{

 WorksheetPage wbSource (pb) ;

 if (! wbSource)

 continue ; //not a workbook

 if (wbSource. GetName() == wksPageDest. GetName())

 contin ue; //skip our destination book

 // copy worksheet to destination book and delete it from source book

 foreach (Layer lay in wbSource. Layers)

 {

 Worksheet wks = lay;

 wksPageDest. AddLayer(wks, 0, bKeepSourceLayer) ;

 }

 wbSourc e. Destroy() ; // destroy the empty workbook

}

6.4.2.7 Format a Worksheet

A worksheet can be formatted programmatically using a theme tree. The example below
demonstrates obtaining and saving an existing theme tree:

http://www.originlab.com/doc/OriginC/ref/Worksheet-Reorder
http://www.originlab.com/doc/OriginC/ref/Page-AddLayer

Origin C Programming Guide

82

// get format tree from worksheet

Worksheet wks = Project. ActiveLayer() ;

Tree tr;

tr = wks. GetFormat(FPB_ALL, FOB_ALL, TRUE, TRUE) ;

out_tree (tr) ; // Output tree to Script window

Or, you may construct a theme tree as in the following three steps. First, create a worksheet and
insert some data:

// Create worksheet

Worksheet wks;

wks. Create("Origin") ;

wks. SetCell (0, 0, "abc") ; // Put text to (0, 0) cell

// Establish data range to apply formatting:

DataRange dr;

int r1 = 0, c1 = 0, r2 = 4, c2 = 1;

dr. Add("Range1" , wks, r1, c1, r2, c2) ;

Second, construct the tree using the range information and provide values for desired properties:

Tree tr;

// Setup the range that the format want to apply

tr. Root . RangeStyles . RangeStyle1 . Left . nVal = c1 + 1;

tr. Root . RangeStyles . RangeStyle1 . Top. nVal = r1 + 1;

tr. Root . RangeStyles . RangeStyle1 . Right . nVal = c2 + 1;

tr. Root . RangeStyles . RangeStyle1 . Bottom . nVal = r2 + 1;

// Fill color

tr. Root . RangeStyles . RangeStyle1 . Style . Fill . FillColor . nVal =

SYSCOLOR_LTCYAN;

// Alignment of text in cell, 2 for center

tr. Root . RangeStyles . RangeStyle1 . Style . Alignment . Horizontal . nVal = 2;

// The font size of text

tr. Root . RangeStyles . RangeStyle1 . Style . Font . Size . nVal = 11;

// The color of text

tr. Root . RangeStyles . RangeStyle1 . Style . Color . nVal = SYSCOLOR_BLUE;

Third, apply the formatting to the data range:

// Apply the format to the specified data range

if (0 == dr. UpdateThemeIDs(tr. Root)) // Returns 0 for no error

{

 bool bRet = dr. ApplyFormat(tr, true , true) ;

}

6.4.2.8 Merge Cells

We can use Origin C code to merge Worksheet cells with the specified range. The selected range
can be data area or column label area. If you want to merge label cells, just change bLabels to true in
the following code.

 Workbooks Worksheets and Worksheet Columns

83

Worksheet wks;

wks. Create("Origin") ;

//Define a Grid and attach it to the worksheet

Grid gg;

gg. Attach(wks) ;

// to mer ge the first two rows in two columns

ORANGE rng;

rng. r1 = 0;

rng. c1 = 0;

rng. r2 = 1;

rng. c2 = 1;

bool bLabels = false ;

bool bRet = gg. MergeCells(rng, bLabels) ;

if (bRet)

 printf("Successfully merged cells in %s! \ n" , wks. GetName()) ;

else

 printf("Faile d to merge cells in %s! \ n" , wks. GetName()) ;

6.4.2.9 Read Only Cells

If you don't want the contents in a cell of worksheet to be changed, you can set the cells to be read-
only by using theme tree.
The example below shows how to set the data cells in worksheet to be read-only, and then change
the second data cell in column 1 to be editable.

// Create a worksheet by using default template (Origin)

// so to make sure that Long Name, Units, and Commnets rows are shown

Worksheet wks;

wks. Create("Origin") ;

Tree tr;

tr = wks. GetFormat(FPB_ALL, FOB_ALL, true , true) ; // Get theme tree of

worksheet

// Start to get the specific tree node from the theme tree

// to set the read - only format for the data cells

string strName = "ogData" ; // Use to get the node with the desir ed format

TreeNode trGrid, trNameStyles;

trGrid = tr. Root . Grid ; // Get Grid node

if (! trGrid. IsValid())

 return ;

// Read - only format is under some child node of this node

trNameStyles = trGrid. NameStyles ;

if (! trNameStyles. IsValid())

 return ;

TreeNode trNameStyle;

bool bRet = false ;

// Loop all children nodes to find out the desired tree node

foreach (trNameStyle in trNameStyles. Children)

{

Origin C Programming Guide

84

 // Find the node with "ogData"

 if (0 == trNameStyle. Name. strVal . Compare(strName))

 {

 bRet = true ;

 break ;

 }

}

if (! bRet)

 return ;

trNameStyle. Style . ReadOnly . nVal = 1; // Set all data cells to be read -

only

// Start to get/create the specific tree node from the theme tree

// to cancel the read - only format for the specified data cell

TreeNode trRangeStyles;

tr RangeStyles = trGrid. RangeStyles ; // Get RangeStyles node from Grid

node

TreeNode trRangeStyle;

if (! trRangeStyles. IsValid()) // If RangeStyles node does not exist yet

{

 // Create RangeStyles node

 trRangeStyles = trGrid. AddNode("RangeStyles") ;

 // And c reate a sub node named RangeStyle1

 trRangeStyle = trRangeStyles. AddNode("RangeStyle1") ;

}

else // If RangeStyles node already exist

{

 // Find how many children nodes

 int tagNum = trRangeStyles. Children . Count() ;

 // And create a sub node name RangeStyle #, # = tagNum+1

 trRangeStyle = trRangeStyles. AddNode("RangeStyle" +(tagNum+1)) ;

}

// Define the range for setting, here range is just one cell

// Left cell of the range, start from 1

trRangeStyle. Left . nVal = 1;

// Top cell of the range, start from 5, inc luding label rows

// there are 4 label rows, then 5 means the first data cell

trRangeStyle. Top. nVal = 5;

// Just one cell, so right of the range is the same with left

trRangeStyle. Right . nVal = 1;

// Just one cell, so bottom of the range is the same with top

trRangeStyle. Bottom . nVal = 5;

trRangeStyle. Style . ReadOnly . nVal = 0; // Set read - only to 0 to cancel it

// Apply the setting format to worksheet

if (0 == wks. UpdateThemeIDs(tr. Root))

{

 bool bb = wks. ApplyFormat(tr, true , true) ;

 if (bb)

 {

 printf("Cell 1 in column 1 is editable. \ n") ;

 }

}

 Workbooks Worksheets and Worksheet Columns

85

It is also able to set the Read-Only format for the cells in label rows. We can just make some simple
changes on the code above. For example, we are going to make the Comments row to be read-only
except the one in column 2, then the corresponding changes are like below.

/* Comment out the line below in the above code

string strName = "ogData";

*/

// This line is for the Data, just change it for Comments, as following

string strName = "ogComment" ;

/* Comment out th e following 4 lines in the above code

trRangeStyle.Left.nVal = 1;

trRangeStyle.Top.nVal = 5;

trRangeStyle.Right.nVal = 1;

trRangeStyle.Bottom.nVal = 5;

*/

// These 4 lines are used to set for the second data

// cell (assume 3 label rows displayed in work sheet)

// Now we need to set for the Comments cell,

// assume the Comments row is the third row,

// and is for column 2, but not column 1 anymore, then

trRangeStyle. Left . nVal =

trRangeStyle. Right . nVal = 2; // Column 2

// Comments row (the third row dis played in worksheet)

trRangeStyle. Top. nVal =

trRangeStyle. Bottom . nVal = 3;

6.4.3 Worksheet Data Manipulation

In this section we present examples of how to manipulate worksheet data by Origin C.

6.4.3.1 Get Worksheet Selection

Worksheet::GetSelectedRange can be used to get one or multiple selected data ranges from a
worksheet. The following code shows how to get data from one column by worksheet selection. This
function returns range type, like one column, one row, whole worksheet, etc.

Worksheet wks = Project. ActiveLayer() ;

int r1, c1, r2, c2;

int nRet = wks. GetSelectedRange(r1, c1, r2, c2) ;

if (WKS_SEL_ONE_COL & nRet) // exactly one column selected

{

 // construct a data range object by selection

 Data Range dr;

 dr. Add("X" , wks, r1, c1, r2, c2) ;

 // get data from the selected column

 vector vData;

 dr. GetData(&vData, 0) ;

}

6.4.3.2 Set Display Range in Worksheet

http://www.originlab.com/doc/OriginC/ref/Worksheet-GetSelectedRange

Origin C Programming Guide

86

If you want to set a display range in a Worksheet, you can use Worksheet::SetBounds, and it is the
same as using the Set As Begin/End menu.
The following code shows how to set a beginning and end for all columns in the current worksheet
window.

Worksheet wks = Project. ActiveLayer() ;

// the beginning and end of rows

int begin = 9, end = 19;

// set beginning and end for all columns

int c1 = 0, c2 = - 1; // - 1 means end

wks. SetBounds(begin, c1 , end, c2) ;

6.4.3.3 Put Large Dataset to Worksheet

In order to keep an Origin C function running efficiently when working with a large data set (e.g. 1000
columns) in a worksheet, use the steps below.

¶ Prepare the columns and rows before putting data into the worksheet.

¶ Use Worksheet::SetSize, don't use Worksheet::AddCol to set the size.

¶ Set the size on an empty worksheet, meaning no columns and rows, since otherwise Origin will

need to check the short names of the existing columns to avoid duplicate names when adding

new columns, and this could cost you lots of time. You can use while(wks.DeleteCol(0)); to

remove all columns to make an empty Worksheet.

¶ Put data into worksheet columns by buffer, DataObject::GetInternalDataBuffer.

¶ Keep Code Builder closed when running functions to improve the speed of execution.

See the following example codes:

// prepare worksheet size

Worksheet wks;

wks. Create("Origin") ;

while (wks. DeleteCol(0)) ;

int rows = 100 , cols = 1000 ;

wks. SetSize(rows, cols) ;

// put data set into worksheet columns one by one

foreach (Column col in wks. Columns)

{

 col. SetFormat(OKCOLTYPE_NUMERIC) ;

 col. SetInternalData(FSI_SHORT) ;

 col. SetUpperBound(rows - 1) ; //index of last row, 0 offset

 int nElementSize;

 uint nNum;

 LPVOID pData = col. GetInternalDataBuffer(&nElementSize, &nNum) ;

 short * psBuff = (short *) pData;

http://www.originlab.com/doc/OriginC/ref/Worksheet-SetBounds
http://www.originlab.com/doc/OriginC/ref/Worksheet-SetSize
http://www.originlab.com/doc/OriginC/ref/Worksheet-AddCol
http://www.originlab.com/doc/OriginC/ref/DataObject-GetInternalDataBuffer

 Workbooks Worksheets and Worksheet Columns

87

 // OC loop is still slow, but you might pass this pointer to your DLL

 // for much faster manipulation, here we just show that the pointer

works

 for (int ii = 0; ii < rows; ii ++, psBuff ++)

 {

 * psBuff = (ii +1) * (col. GetIndex() +1) ;

 }

 col. ReleaseBuffer() ; // do NOT forget to call this

}

6.4.3.4 Access Embedded Graph in a Worksheet

Create a new graph and a new worksheet, and then embed the graph within one of the worksheet's
cells:

GraphPage gp;

gp. Create("Origin") ;

Worksheet wks;

wks. Create() ;

int nOptions = EMBEDGRAPH_KEEP_ASPECT_RATIO | EMBEDGRAPH_HIDE_LEGENDS;

// Put the graph in worksheet cell (0, 0)

wks. EmbedGraph(0, 0, gp, nOptions) ;

Access a graph that is embedded within a worksheet; by name or by index:

// Get embedded graph from active worksheet

Worksheet wks = Project. ActiveLayer() ;

GraphPage gp;

gp = wks. EmbeddedPages(0) ; // Get embedded graph page by index

gp = wks. EmbeddedPages("Graph1") ; // G et embedded graph page by name

6.4.3.5 Sort Worksheet Data

Perform a row-wise sort of column data with the Sort method. For sorting a single column, use the
vectorbase::Sort method:

// Sort column

// Before running, please keep active worksheet with two columns fill with

data.

// For example, import \ Samples \ Mathematics \ Sine Curve.dat to worksheet.

Worksheet wks = Projec t. ActiveLayer() ;

Column colY (wks, 1) ; // Y column

// After sort, the original relation for (x, y) will be broken.

vectorbase & vec = colY. GetDataObject() ;

vec. Sort() ;

To sort all columns in a worksheet, use the Worksheet::Sort method:

http://www.originlab.com/doc/OriginC/ref/vectorbase-Sort
http://www.originlab.com/doc/OriginC/ref/Worksheet-Sort

Origin C Programming Guide

88

// Sort worksheet

// Before running, please keep active worksheet with two columns fill with

data.

// For example, import \ Samples \ Mathematics \ Sine Curve.dat to worksheet.

Worksheet wks = Project. ActiveLayer() ;

int nCol = 1; // Ascending sort all worksheet data on the second column

BOOL bIsAscending = true ;

BOOL bMissingValuesSmall = TRUE; // Treat missing value as smallest

int r1 = 0, c1 = 0, r2 = - 1, c2 = - 1; // - 1 means en d for r2 and c2

// After sort, each (x, y) still keep the original relation

wks. Sort(nCol, bIsAscending, bMissingValuesSmall, r1, c1, r2, c2) ;

6.4.3.6 Mask Worksheet Data

The following code shows how to set a mask on the rows of data that are less than or equal to 0 for
the specified column.

int nCol = 1;

Worksheet wks = Project. ActiveLayer() ;

Column col (wks, nCol) ;

vector vData = col. GetDataObject() ;

// to find all less than and equal 0 and return row index

vector <uint > vnRowIndex;

vData. Find(MATREPL_TEST_LESSTHAN | MATREPL_TEST_EQUAL, 0, vnRowIndex) ;

// construct a range including multiple subranges added by row and column

index

DataRange dr;

for (int nn = 0; nn < vnRowIndex. GetSize() ; nn ++)

{

 int r1, c1, r2, c2;

 r1 = r2 = vnRowIndex [nn] ;

 c1 = c2 = nCol;

 dr. Add("X" , wks, r1, c1, r2, c2) ;

}

// set mask on data range

dr. SetMask() ;

6.4.3.7 Set Size

The Worksheet::SetSize method is used to set the number of rows and columns in a worksheet.

// Set the number of rows and columns, and data will be kept.

// If want to add a lots of columns and rows at once time, better use

SetSize

int nNumRows = 100 ;

int nNumCols = 20;

wks. SetSize(nNumRows, nNumCols) ;

// If want to change the number of rows but keep the number of columns,

// can use - 1 replace. For example:

wks. SetSize(nNumRows, - 1) ;

// The same usage also used to change column number and keep row number.

http://www.originlab.com/doc/OriginC/ref/Worksheet-SetSize

 Workbooks Worksheets and Worksheet Columns

89

6.4.3.8 Reduce Worksheet Data

 Origin C provides some functions for reducing XY data in worksheet, such as
ocmath_reducexy_fixing_increbin for reducing XY data by X increment, ocmath_reducexy_n_groups
for reducing XY data by number of groups, ocmath_reducexy_n_points for reducing XY data by every
N points, etc. The following is an example to show how to reduce XY data by every N points.

Worksheet wks = Project. ActiveLayer() ; // Get active worksheet

if (! wks)

{

 return ;

}

Column colX (wks, 0) ; // First column in worksheet

Column colY (wks, 1) ; // Second column in works heet

if (colX && colY)

{

 vectorbase &vbInterY = colY. GetDataObject() ; // Get Y column data

 vector vY = vbInterY;

 vector vReduced (vY. GetSize()) ;

 int nPoints = 3;

 // Reduce every 3 points, and result is the mean of every 3 points

 int nNewSize = ocmat h_reducexy_n_points (vY, vReduced, vY. GetSize() ,

 nPoints, REDUCE_XY_STATS_MEAN) ;

 int iReduced = wks. AddCol("Reduced") ; // Add a new column for

result

 Column colReduced (wks, iReduced) ;

 vectorbase &vbReduced = colReduced. GetDataObject() ;

 vbReduced = vReduced;

}

6.4.3.9 Extract Data from Worksheet with LT Condition

Select worksheet data using the Worksheet::SelectRows method. Rows can be selected across
many columns.

// Select data from a worksheet based on a condition;

// put the indices of the selected rows into a vector of type 'uint'.

Worksheet wks = Project. ActiveLayer() ;

// Check the worksheet data b ased on the condition expression and

// output the row index into 'vnRowIndices'.

// Define Labtalk range objects, 'a' = column 1, 'b' = column 2.

string strLTRunBeforeloop = "range a=1; range b=2" ;

string strCondition = "abs(a) >= 1 && abs(b) >= 1" ;

vector <uint > vnRowIndices; // This is output

int r1 = 0, r2 = - 1; // The row range, - 1 means the last row for r2

// Optional maximum number of rows to select, - 1 indicates no limit

int nMax = - 1;

int num = wks. SelectRows(strCondition, vnRowIndice s, r1, r2, nMax,

 strLTRunBeforeloop) ;

There are two ways to highlight the selection. The first is to highlight the selected indices.

// Method 1 of show selection: highlight rows by vnRowIndices

http://www.originlab.com/doc/OriginC/ref/ocmath_reducexy_fixing_increbin
http://www.originlab.com/doc/OriginC/ref/ocmath_reducexy_n_groups
http://www.originlab.com/doc/OriginC/ref/ocmath_reducexy_n_points
http://www.originlab.com/doc/OriginC/ref/Worksheet-SelectRows

Origin C Programming Guide

90

Grid g g;

if (gg. Attach(wks))

{

 // convert uint type vector to int type vector

 vector <int > vnRows;

 vnRows = vnRowIndices;

 gg. SetSelection(vnRows) ;

}

The second method of highlighting a data selection is to prescribe a fill color for the selected rows.

// Method 2 of show selection: fill color on the selected rows by

vnRowIndices

DataRange dr;

// Construct data ranges by the row indices in vnRowIndices.

for (int index =0; index <vnRowIndices. GetSize() ; index ++)

{

 // The following 0(1st col) and - 1(last col) for all columns

 // "" for range name variable, not specified, default name will be

used

 dr. Add("" , wks, vnRowIndices [index] , 0, vnRowIndices [index] , - 1) ;

}

Tree tr ;

tr. Root . CommonStyle . Fill . FillColor . nVal = SYSCOLOR_BLUE; // fill color =

blue

tr. Root . CommonStyle . Color . nVal = SYSCOLOR_WHITE; // font color = white

if (0 == dr. UpdateThemeIDs(tr. Root)) // Return 0 for no error

{

 bool bRet = dr. ApplyFormat(tr, true , true) ;

}

6.4.3.10 Compare Data in Two Worksheets

It may be useful to compare the number of rows or columns between two worksheets, or compare the
data themselves. Get a row or column count from a worksheet with the Datasheet::GetNumRows and
Datasheet::GetNumCols methods.

if (wks1. GetNumRows() ! = wks2. GetNumRows()

 || wks1. GetNumCols() ! = wks2. GetNumCols())

{

 out_str ("The two worksheets are not the same size") ;

 return ;

}

Another way to perform a similar operation is to copy the data from each worksheet into a vector, and
compare the size of the vectors.

// get all data from worksheet 1 columns one by one

vector vec1;

foreach (Column col in wks1. Columns)

{

http://www.originlab.com/doc/OriginC/ref/Datasheet-GetNumRows
http://www.originlab.com/doc/OriginC/ref/Datasheet-GetNumCols

 Workbooks Worksheets and Worksheet Columns

91

 vector & vecCol = col. GetDataObject() ;

 vec1. Append(vecCol) ;

}

// get all data from worksheet 2 columns one by one

vector vec2;

foreach (col in wks2. Columns)

{

 vector & vecCol = col. GetDataObject() ;

 vec2. Append(vecCol) ;

}

if (vec1. GetSize() ! = vec2. GetSize())

{

 out_str ("The size of the two data sets is not equal") ;

 return ;

}

To compare data elements themselves, use the ocmath_compare_data function on the vectors in the
example above.

bool bIsSame = false ;

double dTolerance = 1e- 10;

ocmath_compare_data (vec1. GetSize() , vec1, vec2, &bIsSame, dTolerance) ;

if (bIsSame)

{

 out_str ("Data in the two worksheets are the same") ;

}

6.4.4 Converting Worksheet to Matrix

You may need to re-organize your data by converting from worksheet to matrix, or vice versa, for
certain analysis or graphing needs. This page provides information and examples of converting
worksheet to matrix, and please refer to Converting Matrix to Worksheet for the "vice versa" case.

6.4.4.1 Worksheet Gridding

1. Run the following command in the Command Window to compile the nag_utils.c file and add it

into the current workspace

Run. LoadOC(Originlab \ nag_utils. c, 16) ;

2. Include header files in the Origin C file.

#include <wks2mat. h>

#include <Nag_utils. h>

3. Get XYZ data from the active worksheet XYZ columns.

http://www.originlab.com/doc/OriginC/ref/ocmath_compare_data
http://www.originlab.com/doc/OriginC/guide/Converting-Matrix-to-Worksheet

Origin C Programming Guide

92

// Construct XYZ data range from XYZ columns

XYZRange rng;

rng. Add(wks, 0, "X") ;

rng. Add(wks, 1, "Y") ;

rng. Add(wks, 2, "Z") ;

// Get XYZ data from data range objects to vectors

vector vX, vY, vZ;

rng. GetData(vZ, vY, vX) ;

4. Examine source data type, for example: regular, sparse.

UINT nVar;

double xmin, xstep, xmax, ymin, ystep, ymax;

int nSize = vX. GetSize() ;

int nMethod = ocmath_xyz_examine_data (nSize, vX, vY, vZ, 1.0e - 8,

1.0e - 8,

&nVar, &xmin, &xstep, &xmax, &ymin, &ystep, &ymax) ;

5. Calculate the number of rows and columns for the result matrix window.

int nRows = 10, nCols = 10;

if (0 == nMethod || 1 == nMethod) // Regular or sparse

{

 double dGap = 1.5 ;

 if (! is_equal (ystep, 0))

 nRows = abs(ymax - ymin) / ystep + dGap;

 if (! is_equal (xstep, 0))

 Workbooks Worksheets and Worksheet Columns

93

 nCols = abs(xmax - xmin) / xstep + dGap;

}

6. Prepare the result matrix window.

// Prepare matrix window to put gridding result

MatrixPage mp;

mp.Create("origin") ; // Create matrix w indow

MatrixLayer ml = mp.Layers(0) ; // Get the first matrix sheet

MatrixObject mo (ml, 0) ; // Get the first matrix object

mo.SetXY(xmin, ymin, xmax, ymax) ; // Set the from/to for X and Y

mo.SetSize(nRows, nCols) ; // Set the number of rows and columns

7. Do XYZ gridding with the different method types.

matrix & mat = mo.GetDataObject() ; // Get data object from matrix

object

int iRet;

switch (nMethod)

{

case 0: // Regular

 iRet = ocmath_convert_regular_xyz_to_matrix (nSize, vX, vY, vZ,

 mat, xmin, xstep, nCols, ymin, ystep, nRows) ;

 printf(" --- %d: regular conversion --- \ n" , iRet) ;

 break ;

case 1: // Sparse

Origin C Programming Guide

94

 iRet = ocmath_convert_sparse_xyz_to_matrix (nSize, vX, vY, vZ,

 mat, xmin, xstep, nCols, ymin, ystep, nRows) ;

 printf(" --- %d: sparse conversion - -- \ n" , iRet) ;

 break ;

case 2: // Random(Renka Cline)

 vector vxGrid (nRows* nCols) , vyGrid (nRows* nCols) ;

 iRet = ocmath_mat_to_regular_xyz (NULL, nRows, nCols, xmin,

 xmax, ymin, ymax, vxGrid, vyGrid) ;

 if (iRet >= 0)

 {

 iRet = xyz_gridding_nag (vX, vY, vZ, vxGrid, vyGrid,

mat) ;

 }

 printf(" --- %d: random conversion --- \ n" , iRet) ;

 break ;

default : // Error.

 printf(" --- Error: Other method type --- \ n") ;

}

6.4.4.2 Worksheet to Matrix

Data contained in a worksheet can be converted to a matrix using a set of functions.
To converts matrix-like worksheet data directly into a matrix, data in source worksheet can contain
the X or Y coordinate values in the first column, first row. However, because the coordinates in a
matrix should be uniform spaced, you should have uniformly spaced X/Y values in the source
worksheet. The CopyFramWks method can be used directly, or just attach XYZ data range to matrix.
The following example show how to perform direct worksheet to matrix conversion:

// Method 1: using CopyFromWks

Worksheet wks = Project. ActiveLayer() ;

if (! wks)

{

http://www.originlab.com/doc/OriginC/ref/matrixbase-CopyFromWks

 Workbooks Worksheets and Worksheet Columns

95

 return ;

}

MatrixPage matPg;

matPg. Create("Origin") ;

MatrixLayer matLy = matPg. Layers(0) ;

Matrix mat (matLy) ;

matrix <double > mat1;

if (! mat1. CopyFromWks(wks, 1, - 1, 1, - 1))

{

 out_str ("Error: CopyFromWks failed!") ;

 return ;

}

mat = mat1;

// Method 2: attach to MatrixObject

Worksheet wks = Project. ActiveLayer() ;

if (! wks)

{

 return ;

}

int nCols = wks. GetNumCols() ;

int nRows = wks. GetNumRows() ;

DataRange dr;

dr. Add("X" , wks, 0, 1, 0, nCols - 1) ; // First row excep the first cell

dr. Add("Y" , wks, 1, 0, nRows - 1, 0) ; // First column except the first

cell

dr. Add("Z" , wks, 1, 1, nRows - 1, n Cols - 1) ;

MatrixPage matPg;

matPg. Create("Origin") ;

MatrixLayer matLy = matPg. Layers(0) ;

MatrixObject mo = matLy. MatrixObjects(0) ;

MatrixObject moTmp;

moTmp.Attach(dr) ;

matrixbase &matTmp = moTmp.GetDataObject() ;

matrixbase &mat = mo.GetDataObject() ;

mat = matTmp;

moTmp.Detach() ;

When your worksheet data is organized in XYZ column form, you should use Gridding to convert
such data into a matrix. Many gridding methods are available, which will interpolate your source data
and generate a uniformly spaced array of values with the X and Y dimensions specified by you.
The following example converts XYZ worksheet data by Renka-Cline gridding method.

// Convert worksheet data into a 20 x 20 matrix by Renka - Cline gridding

method

Worksheet wks = Project. ActiveLaye r() ;

if (! wks)

{

 return ;

}

Dataset dsX (wks, 0) ;

Dataset dsY (wks, 1) ;

Dataset dsZ (wks, 2) ;

int nPoints = dsX. GetSize() ;

Origin C Programming Guide

96

vector vX = dsX;

vector vY = dsY;

vector vZ = dsZ;

ocmath_RenkaCline_Struct comm;

ocmath_renka_cline_interpolation (nPoints, vX, vY, vZ , &comm) ;

//set X and Y of the gridding

double dXMin, dXMax, dYMin, dYMax;

vX. GetMinMax(dXMin, dXMax) ;

vY. GetMinMax(dYMin, dYMax) ;

//perform random matrix conversion using Kriging algorithm

int nRows = 20;

int nCols = 20;

matrix mZ (nRows, nCols) ;

vec tor vEvalX (nRows * nCols) ;

vector vEvalY (nRows * nCols) ;

ocmath_mat_to_regular_xyz (NULL, nRows, nCols, dXMin, dXMax, dYMin, dYMax,

vEvalX, vEvalY, NULL, true) ;

ocmath_renka_cline_eval (&comm, nRows * nCols, vEvalX, vEvalY, mZ) ;

ocmath_renka_cline_struct _free (&comm) ;

//create Matrix storing the result

MatrixLayer mResultLayer;

mResultLayer. Create() ;

Matrix matResult (mResultLayer) ;

matResult = mZ;

MatrixObject mo = mResultLayer. MatrixObjects(0) ;

mo.SetXY(dXMin, dYMin, dXMax, dYMax) ; //set X and Y ra nge of Matrix

6.4.5 Virtual Matrix

 You can construct a virtual matrix from a worksheet window. Pick separate data ranges from the
worksheet for X, Y, Z data of the virtual matrix. If you do not specify X and Y data, it will automatically
use default data. The following code shows how to construct a virtual matrix from an active worksheet
window, and then plot this virtual matrix on a graph.

// before running, make sure t here is active worksheet window with data.

// For example, new a worksheet window, import XYZ Random Gaussian.dat

from

// Origin folder Samples \ Matrix Conversion and Gridding subfolder to

worksheet.

Worksheet wks = Project. ActiveLayer() ;

int r1, r2;

int c1 = 0, c2 = 2;

wks. GetBounds(r1, c1, r2, c2) ;

// construct a data range object only with Z data, X and Y data will be

auto

// assigned.

DataRange dr;

dr. Add("Z" , wks, r1, c1, r2, c2) ;

 Workbooks Worksheets and Worksheet Columns

97

MatrixObject mo;

mo.Attach(dr) ;

int nRows = mo.GetNumRows() ;

int nCols = mo.GetNumCols() ;

// get the default x, y range

double xmin, xmax, ymin, ymax;

mo.GetXY(xmin, ymin, xmax, ymax) ;

GraphPage gp;

gp. Create("CONTOUR") ;

GraphLayer gl = gp. Layers(0) ;

gl. AddPlot(mo, IDM_PLOT_CONTOUR) ;

gl. Rescale() ;

mo.Detach() ;

If you want to assign X and Y data then the data should be monotone. The following example shows
how to construct a virtual matrix with an XYZ data range.

// Assume the active layer is a worksheet with 5 columns of data.

Worksheet wks = Project. ActiveLaye r() ;

// Get min and max row indices for columns 0 to 4.

int r1, r2, c1 = 0, c2 = 4;

wks. GetBounds(r1, c1, r2, c2) ;

// Create a data range object with XYZ data.

DataRange dr;

dr. Add("X" , wks, 0, 1, 0, c2) ; // First row except the first cell

dr. Add("Y" , wks, 1, 0, r2, 0) ; // First column except the first cell

dr. Add("Z" , wks, 1, 1, r2, c2) ;

MatrixObject mo;

mo.Attach(dr) ;

99

77 Graphs

7.1 Graphs

The GraphPage class is for working with a graph window. There is a GraphPage object for each
graph window. A GraphPage object contains a collection of layers. Each of these layers is a
GraphLayer object.
Accessing an Existing Graph
There are multiple ways to access an existing graph. The methods used are the same as those used
for workbooks and matrix books.
You can access a graph by passing its name to the class constructor.

GraphPage grPg ("Graph1") ;

if (grPg) // if there is a graph named "Gra ph1"

 grPg. SetName("MyGraph1") ; // rename the graph

The Project class contains a collection of all the graphs in the project. The following example shows
how to loop through the collection and output the name of each graph.

foreach (GraphPage grPg in Project. GraphPages)

 out_str (grPg. GetName()) ; // output graph name

You can access a graph by passing its zero-based index to the Item method of the Collection class.

GraphPage grPg;

grPg = Project. GraphPages . Item(2) ;

if (grPg) // if there is a 3rd graph

 out_str (grPg. GetName()) ; // output graph name

Deleting a Graph
All Origin C's internal classes are derived from the OriginObject class. This class has a Destroy
method that is used to destroy the object. Calling this method on a graph will destroy the graph, all
the layers in the graph, and all the graph objects on each layer.

GraphPage grPg;

grPg = Project. GraphPages . Item(0) ; // get first graph in project

if (grPg) // if there is a graph

 grPg. Destroy() ; // delete the graph

This section covers the following topics:

¶ Creating and Customizing Graph

¶ Adding Data Plots

http://www.originlab.com/doc/OriginC/guide/Creating-and-Customizing-Graph
http://www.originlab.com/doc/OriginC/guide/Adding-Data-Plots

Origin C Programming Guide

100

¶ Customizing Data Plots

¶ Managing Layers

¶ Creating and Accessing Graphical Objects

7.2 Creating and Customizing Graph

7.2.1 Creating Graph Window

The Create method is used for creating new graphs.

GraphPag e gp;

gp. Create("3D") ; // create a graph using the 3D template

7.2.2 Getting Graph Page Format

GraphPage gp ("Graph1") ;

Tree tr;

tr = gp. GetFormat(FPB_ALL, FOB_ALL, true , true) ;

out_tree (tr) ;

7.2.3 Setting Graph Page Format

The following example code shows how to set page background color as a gradient in two colors.

Tree tr;

tr. Root . Background . BaseColor . nVal = SYSCOLOR_RED;

tr. Root . Background . GradientControl . nVal = 1;

tr. Root . Background . GradientColor . nVal = SYSCOLOR_BLUE;

GraphPage gp ("Graph1") ;

if (0 == gp. UpdateThemeIDs(tr. Root))

 gp. ApplyFormat(tr, true , true) ;

7.2.4 Getting Graph Layer Format

GraphLayer gl = Project. ActiveLayer() ;

Tr ee tr;

tr = gl. GetFormat(FPB_ALL, FOB_ALL, true , true) ;

out_tree (tr) ;

7.2.5 Setting Graph Layer Format

 The following example code shows how to set the background of a graph layer object to Black Line
format.

http://www.originlab.com/doc/OriginC/guide/Customizing-Data-Plots
http://www.originlab.com/doc/OriginC/guide/Managing-Layers
http://www.originlab.com/doc/OriginC/guide/Creating-and-Accessing-Graphical-Objects

 Graphs

101

GraphLayer gl = Project. ActiveLayer() ;

Tree tr;

tr. Root . Background . Border . Color . nVal = SYSCOLOR_BLACK;

tr. Root . Background . Border . Width . nVal = 1;

tr. Root . Background . Fill . Color . nVal = SYSCOLOR_WHITE;

if (0 == gl. UpdateThem eIDs(tr. Root))

 gl. ApplyFormat(tr, true , true) ;

7.2.6 Show Additional Lines

This example shows how to show additional lines, the Y=0/X=0 line, and the opposite line.

GraphLayer gl = Project. ActiveLayer() ;

Axis axesX = gl. XAxis ;

axesX. Additional . ZeroLine . nVal = 1; // Show Y = 0 line

axesX. Additional . OppositeLine . nVal = 1; // Show X Axes opposite line

7.2.7 Show Grid Lines

This example shows how to set gridlines to show, and how to color them.
Color values can be an index into Origin's internal color palette or an RGB value. See Color in the
Data Types and Variables section for more information about working with color values.

GraphLayer gl = Project. ActiveLayer() ;

Axis axisY = gl. YAxis ;

Tree tr;

// Show major grid

TreeNode trProperty = tr. Root . Grids . HorizontalMajorGrids . AddNode("Show") ;

trProperty. nVal = 1;

tr. Root . Grids . HorizontalMajorGrids . Color . nVal = RGB2OCOLOR(RGB(100 , 100 ,

220)) ;

tr. Root . Grids . HorizontalMajorGrids . Style . nVal = 1; // Solid

tr. Root . Grids . HorizontalMajorGrids . Width . dVal = 1;

// Show minor grid

trProperty = tr. Root . Grids . HorizontalMinorGrids . AddNode("Show") ;

trProperty. nVal = 1;

tr. Root . Grids . HorizontalMinorGrids . Color . nVal = SYSCOLOR_GREEN; // Green

tr. Root . Grids . HorizontalMinorGrids . Style . nVal = 2; // Dot

tr. Root . Grids . HorizontalMinorGrids . Width . dVal = 0.3 ;

if (0 == axisY. UpdateThemeIDs(tr. Root))

{

 bool bRet = axisY. ApplyFormat(tr, true , true) ;

}

7.2.8 Setting Axis Scale

This example shows how to set scale parameters, increment, type and so on.

http://www.originlab.com/doc/OriginC/guide/Data-Types-and-Variables
http://www.originlab.com/doc/OriginC/guide/Data-Types-and-Variables

Origin C Programming Guide

102

GraphLayer gl = Project. ActiveLayer() ;

Axis axesX = gl. XAxis ;

axesX. Scale . From. dVal = 0;

axesX. Scale . To. dVal = 1;

axesX. Scale . IncrementBy . nVal = 0; // 0=increment by value; 1=number of

major ticks

axesX. Scale . Value . dVal = 0.2 ; // Increment value

axesX. Scale . Type . nVal = 0; // Linear

axesX. Scale . Rescale . nVal = 0; // Rescake type

axesX. Scale . RescaleMargin . dVal = 8; // precent 8

This example shows how to set scale major ticks number for Y axis.

GraphLayer gl = Project. ActiveLayer() ;

Axis axesY = gl. YAxis ;

axesY. Scale . IncrementBy . nVal = 1; // 0: increment by value; 1: number of

major ticks

axesY. Scale . MajorTicksCount . nVal = 5;

7.2.9 Getting Axis Format

GraphLayer gl = Project. ActiveLayer() ;

Axis axisX = gl. XAxis ;

// Get all axis format settings to tree

Tree tr;

tr = axisX. GetFormat(FPB_ALL, FOB_ALL, true , true) ;

out_tree (tr) ;

7.2.10 Setting Axis Label

An axis label is an ordinary text object and is accessed in Origin C using the GraphObject class. On a
default graph the X axis is named XB and the Y axis is named YL. The following code shows how to
access the X and Y axis labels and assumes a default graph is the active page.

GraphLayer gl = Project. ActiveLayer() ; // Get active graph layer

GraphObject grXL = gl. GraphObjects("XB") ; // Get X axis labe l

GraphObject grYL = gl. GraphObjects("YL") ; // Get Y axis label

Now that we have access to the axis labels we can change their values. The following code sets the
X axis label directly and sets the Y axis label indirectly by linking it to a LabTalk string variable.
Linking to a LabTalk variable requires the label's Programming Control option "Link to variables" to be
turned on. This option is on by default.

grXL. Text = "My New X Asis Label" ;

LT_set_str ("abc$" , "My String Variable") ;

grYL. Text = "%(abc$)" ;

To make sure the label changes appear, it may be necessary to refresh the graph page. With our
GraphLayer object we can refresh the page with the following code.

 Graphs

103

gl. GetPage() . Refresh() ;

7.2.11 Show Top Axis

This example shows how to show X top axes.

// Show axes and ticks

Tree tr;

TreeNode trProperty = tr. Root . Ticks . TopTicks . AddNode("Show") ;

trProperty. nVal = 1;

// Show tick labels

trProperty = tr. Root . Labels . TopLabels . AddNode("Show") ;

trProperty. nVal = 1;

GraphLayer gl = Project. ActiveLayer() ;

Axi s axesX = gl. XAxis ;

if (0 == axesX. UpdateThemeIDs(tr. Root))

{

 bool bRet = axesX. ApplyFormat(tr, true , true) ;

}

7.2.12 Customizing Axis Ticks

This example shows how to set the format in the Axis dialog -> Title & Format tab.

GraphLayer gl = Project. ActiveLayer() ;

Axis axesX = gl. XAxis ;

Tree tr; // Set ticks color as Auto, depend on the color of data plot

tr. Root . Ticks . BottomTicks . Color . nVal = INDEX_COLOR_AUTOMATIC;

tr. Root . Ticks . BottomTicks . Width . dVal = 3;

tr. Root . Ticks . BottomTicks . Major . nVal = 0; // 0: In and Out

tr. Root . Ticks . BottomTicks . Minor . nVal = 2; // 2: Out

tr. Root . Ticks . BottomTicks . Style . nVal = 0; // Solid

if (0 == axesX. UpdateThemeIDs(tr. Root))

 bool bRet = axesX. ApplyFormat(tr, true , true) ;

7.2.13 Customizing Tick Labels

This example shows how to set tick labels with custom positions. It performs the same action as
going in the Axis dialog Custom Tick Labels tab.

GraphLayer gl = Project. Act iveLayer() ;

Axis axesX = gl. XAxis ;

Tree tr;

// Show axes begin and end as scale value

tr. Root . Labels . BottomLabels . Custom . Begin . Type . nVal = 2;

tr. Root . Labels . BottomLabels . Custom . End. Type . nVal = 2;

// Set special point as Manual type with the special va lue and text.

tr. Root . Labels . BottomLabels . Custom . Special . Type . nVal = 3;

Origin C Programming Guide

104

tr. Root . Labels . BottomLabels . Custom . Special . Label . strVal = "Mid" ;

tr. Root . Labels . BottomLabels . Custom . Special . Value . dVal = 12;

if (0 == axesX. UpdateThemeIDs(tr. Root))

{

 bool bRet = ax esX. ApplyFormat(tr, true , true) ;

}

7.3 Adding Data Plots

Plots or Data plots are representations of your data within a graph layer. Each graph layer may
contain one or more plots.

7.3.1 2D Plot (XY, YErr, Bar/Column)

7.3.1.1 Plot XY Scatter

The following code shows how to construct an XYYErr data range from the active worksheet, and
then plot the data range in a newly created graph.

Worksheet wks = Project. ActiveLayer() ;

// The range name must be X, Y, Z or ED(for YErr) to make sense.

DataRange dr;

dr. Add(wks, 0, "X") ; // 1st column for X data

dr. Add(wks, 1, "Y") ; // 2nd column for Y data

dr. Add(wks, 2, "ED") ; // Optional, 3th column for Y Error data

// Create a graph window

GraphPage gp;

gp. Create("Origin") ;

GraphLayer gl = gp. Layers() ; // Get active layer

// Plot XY data range as scatter

// IDM_PLOT_SCATTER is plot type id, see other types plot id in oPlotIDs.h

file.

int nPlotIndex = gl. AddPlot(dr, IDM_PLOT_SCATTER) ; // Returns plot index

(offset is 0), else return - 1 for error

if (nPlotIndex >= 0)

{

 gl. Rescale() ; // Rescale axes to show all data points

}

7.3.1.2 Attach YErr Plot

Attach YErr data to an existing XY data plot.

GraphLayer gl = Project. ActiveLayer() ;

DataPlot dp = gl. DataPlots(- 1) ; // Get active data plot

// Get Y Error column

WorksheetPage wksPage ("Book1") ;

 Graphs

105

Worksheet wks = wksPage. Layers() ;

Column colErrBar (wks, 2) ;

// Plot Y Error column to the active data plot

Curve crv (dp) ;

int nErrPlotIndex = gl. AddErrBar(crv, colErrBar) ;

out_int ("nErrPlotIndex = " , nErrPlotIndex) ;

7.3.1.3 Bar/Column Plot

// before running make sure the active w indow is worksheet

Worksheet wks = Project. ActiveLayer() ;

DataRange dr;

dr. Add(wks, 1, "Y") ; // Construct data range with one column

GraphPage gp;

gp. Create("BAR") ; // Create graph with the specified template

GraphLayer gl = gp. Layers(- 1) ; // Get active graph layer

int index = gl. AddPlot(dr, IDM_PLOT_BAR) ;

if (index >= 0)

{

 out_str ("Plot bar") ;

 gl. Rescale() ;

}

7.3.2 3D Plot

 Plot a 3D surface from a matrix on a graph window.

// Prepare matrix data

MatrixLayer ml;

string strFile = GetAppPath (true) + "Samples \ \ Matrix Conversion and

Gridding \ \

2D Gaussian.ogm" ;

ml. Open(strFile) ;

MatrixObject mo = ml. MatrixObjects(0) ;

// Create graph page with template

GraphPage gp;

gp. Create("CMAP") ;

GraphLayer gl = gp. Layers(0) ;

// Plot 3D surface

int nPlotIndex = gl. AddPlot(mo, IDM_PLOT_SURFACE_COLORMAP) ;

if (0 == nPlotIndex)

{

 gl. Rescale() ;

 printf("3D Surface plotted successfully \ n") ;

}

7.3.3 Contour Plot

7.3.3.1 Plot XYZ Contour

Origin C Programming Guide

106

// Before running, make sure there are XYZ columns with data in the active

// worksheet window. Or you can import \ Samples \ Matrix Conversion and

Gridding \

// XYZ Random Gaussian.dat into worksheet.

Worksheet wks = Project. ActiveLayer() ;

DataRange dr;

dr. Add(wks, 0, "X") ;

dr. Add(wks, 1, "Y") ;

dr. Add(wks, 2, "Z") ;

// Create graph with template

GraphPage gp;

gp. Create("TriContour") ;

GraphLayer gl = gp. Layers() ;

// Plot XYZ contour with type id

int nPlot = gl. AddPlot(dr, IDM_PLOT_TRI_CONTOUR) ;

if (nPlot >= 0)

{

 gl. Rescale() ;

 printf("XYZ contour plotted successfully \ n") ;

}

7.3.3.2 Plot Color Fill Contour

MatrixLayer ml = Project. ActiveLayer() ;

MatrixObject mo = ml. MatrixObjects(0) ;

// Create graph window with template

GraphPage gp;

gp. Create("contour") ;

GraphLayer gl = gp. Layers() ;

int nPlot = gl. AddPlot(mo, IDM_PLOT_CONTOUR) ;

if (nPlot >= 0)

{

 gl. Rescale() ;

}

7.3.4 Image Plot

MatrixLayer ml = Project. ActiveLayer() ;

MatrixObject mo = ml. MatrixObjects(0) ;

// Create graph window with template

GraphPage gp;

gp. Create("image") ;

GraphLayer gl = gp. Layers() ;

int nPlot = gl. AddPlot(mo, IDM_PLOT_MATRIX_IMAGE) ;

if (nPlot >= 0)

{

 gl. Rescale() ;

}

 Graphs

107

7.3.5 Multi-Axes

The following example code shows how to show/hide and set format on the four axes - left, bottom,
right, and top in one graph layer.

#include <.. \ Originlab \ graph_utils. h> // needed for AXIS_*

GraphLayer gl = Project. ActiveLayer() ;

// Show all axes and labels. 0 or 1, 1 for show.

vector <int > vnAxes (4) , vnLabels (4) , vnTitles (4) ;

vnAxes [AXIS_BOTTOM] = 1;

vnAxes [AXIS_LEFT] = 1;

vnAxes [AXIS_TOP] = 1;

vnAxes [AXIS_RIGHT] = 1;

vnLabels = vnAxes;

// Show axis titles of left and bottom axes. 0 or 1, 1 for show.

vnTitles [AXIS_BOTTOM] = 1;

vnTitles [AXIS_LEFT] = 1;

vnTitles [AXIS_TOP] = 0;

vnTitles [AXIS_RIGHT] = 0;

// Set the major tick and minor tick of all axes as IN format

// See other TICK_* items in graph_utils.h.

vector <int > vnMajorTicks (4) , vnMinorTicks (4) ;

vnMajorTicks [AXIS_BOTTOM] = TICK_IN;

vnMajorT icks [AXIS_LEFT] = TICK_IN;

vnMajorTicks [AXIS_TOP] = TICK_IN;

vnMajorTicks [AXIS_RIGHT] = TICK_IN;

vnMinorTicks = vnMajorTicks;

gl_smart_show_object (gl, vnAxes, vnLabels, vnTitles, vnMajorTicks,

vnMinorTicks) ;

7.3.6 Multi-Panels (Multi-Layer, with Shared X-Axis)

The following example shows how to construct multiple graph layers in one graph page, all layers
sharing the x axis in one layer, then plot XY data sets one by one from a worksheet to each graph
layer.
Before compiling the following codes, you need to run this command to build the graph_utils.c file to
your current workspace.

run. LoadOC(Originlab \ graph_utils. c , 16) ;

Compile the following Origin C code. Before running, make sure there is a workbook named Book1,
and it has one X column and at least two Y columns.

#include <.. \ Originlab \ graph_utils. h> // needed for page_add_layer

function

// Construct data range from Book1

WorksheetPage wks Page("Book1") ;

Worksheet wks = wksPage. Layers(0) ; // get the first worksheet in Book1

DataRange dr;

dr. Add(wks, 0, "X") ; // 1st column as X data

dr. Add(wks, 1, "Y" , - 1) ; // 2nd column to last one for Y data

Origin C Programming Guide

108

// Get the number of Y

DWORD dwRules = DRR_GET_DEPENDENT | DRR_NO_FACTORS;

int nNumYs = dr. GetNumData(dwRules) ;

// Add more layers with right Axis and link to the 1st layer

GraphPage gp;

gp. Create("Origin") ;

while (gp. Layers . Count() < nNumYs)

{

 page_add_layer (gp, false , false , false , true ,

 ADD_LAYER_INIT_SIZE_POS_MOVE_OFFSET, false , 0,

LINK_STRAIGHT) ;

}

// Loop and add plot from each XY data range to graph layer

foreach (GraphLayer gl in gp. Layers)

{

 int nLayerIndex = gl. GetIndex() ;

 // Get the sub XY range from dr

 DataRange drOne;

 dr. GetSubRange(drOne, dwRules, nLayerIndex) ;

 // Plot one XY range to graph layer

 int nPlot = gl. AddPlot(drOne, IDM_PLOT_LINE) ;

 if (nPlot >= 0)

 {

 DataPlot dp = gl. DataPlots(nPlot) ;

 dp. SetColor(nLayerIndex) ; // Set data plot as different color

 // Set the ticks and ticklabels of right Y axis auto color

 gl. YAxis . AxisObjects(AXISOBJPOS_AXIS_SECOND) . RightTicks . Color . nVal =

 gl. YAxis . AxisObjects(AXISOBJPOS_LABEL_SECOND) . RightLabels . Color . nVal

= INDEX_COLOR_AUTOMATIC;

 gl. Rescale() ;

 }

}

7.4 Customizing Data Plots

7.4.1 Adding Data Marker

Origin C supports the following methods for customizing data markers.

¶ DataPlot::AddDataMarkers to add a data marker on the data plot to select a sub range

¶ DataPlot::SetDataMarkers to change the position of the present data marker

¶ DataPlot::GetDataMarkers to get all existing data plots

http://www.originlab.com/doc/OriginC/ref/DataPlot-AddDataMarkers
http://www.originlab.com/doc/OriginC/ref/DataPlot-SetDataMarkers
http://www.originlab.com/doc/OriginC/ref/DataPlot-GetDataMarkers

 Graphs

109

¶ DataPlot::RemoveDataMarker to remove the specified data marker.

The following code shows how to add two data markers to the active graph window.

GraphLayer gl = Project. ActiveLayer() ;

DataPlot dp = gl. DataPlots() ;

// the indices of the data markers

vector <int > vnBegin = { 0, 9} ;

vector <int > vnEnd = { 4, 14} ;

// to add two data markers

int nRet = dp. AddDataMarkers(vnBegin, vnEnd) ;

if (0 == nRet)

{

 out_str ("Add data marker successfully.") ;

}

The code below shows how to change the position of the present data marker.

GraphLa yer gl = Project. ActiveLayer() ;

DataPlot dp = gl. DataPlots() ;

// the indices of the data markers

vector <int > vnBegin = { 11, 2} ;

vector <int > vnEnd = { 19, 5} ;

vector <int > vnIndices = { 1, 0} ;

// to add two data markers

int nRet = dp. SetDataMarkers(vnBegin , vnEnd, vnIndices) ;

if (0 == nRet)

{

 out_str ("Set data marker successfully.") ;

 gl. GetPage() . Refresh() ;

}

7.4.2 Setting Color

The following code shows how to set the color of the data plot.

GraphLayer gl = Project. ActiveLayer() ;

DataPlot dp = gl. DataPlots(0) ;

bool bRepaint = true ;

dp. SetColor(SYSCOLOR_GREEN, bRepaint) ;

7.4.3 Getting Format Tree

OriginObject::GetFormat and OriginObject::ApplyFormat are used to get and set Origin object
formats. The following getting, setting and copying format mechanisms can be used for all Origin
objects whose classes derive from the OriginObject base class (see Reference: Class Hierarchy). For
example, the Origin objects can be objects of the DataPlot class, Worksheet class, WorksheetPage
class, MatrixLayer class, MatrixPage class, GraphLayer class, or GraphPage class.
The DataPlot class derives from the DataObjectBase class, and the DataObjectBase class derives
from the OriginObject class, so we can call DataPlot::GetFormat to get the format tree structure.

http://www.originlab.com/doc/OriginC/ref/DataPlot-RemoveDataMarker
http://www.originlab.com/doc/OriginC/guide/Class-Hierarchy

Origin C Programming Guide

110

There are two ways to see the format tree structure via the following code.

¶ Set a break point on the GetFormat line in the following code, activate one data plot, run the

code, press F10 (Step Over) to execute the GetFormat line, and see the details of the format

tree in the Code Builder Local Variables Window tr variable. (press Alt+4 to open/hide the

Local Variables window).

¶ Use the last line, out_tree(tr);, to print out the format tree.

GraphLayer gl = Project. ActiveLayer() ;

DataPlot dp = gl. DataPlots(- 1) ; // Get the active data plot

// Different plot types(for example, Line, Box Chart...) have

// different structure in the format tree.

Tree tr;

// Get the format tree to see details of the tree structure.

tr = dp. GetFormat(FPB_ALL, FOB_ALL, true , true) ;

out_tree (tr) ; // print out the format tree.

7.4.4 Setting Format on Line Plot

GraphLayer gl = Project. ActiveLayer() ;

DataPlot dp = gl. DataPlots(- 1) ; // Get the active data plot

// Set format on a line plot

// Note: See the previous section to get the struct ure of format tree

Tree tr;

tr. Root . Line . Connect . nVal = 2; // 2 for 2 point segment

tr. Root . Line . Color . nVal = RGB2OCOLOR(RGB(100 , 100 , 220)) ;

tr. Root . Line . Width . dVal = 1.5 ;

if (0 == dp. UpdateThemeIDs(tr. Root))

{

 bool bRet = dp. ApplyFormat(tr, true , true) ;

}

7.4.5 Copying Format from One Data Plot to Another

7.4.5.1 Copying Format via Theme File

Getting and saving a format tree from a data plot into a theme file, then loading the theme file to a
tree and applying the format tree to another data plot.

// Save plot settings from Graph1 to a theme file

GraphPage gpSource ("Graph1") ;

GraphLayer glSource = gpSource. Layers(0) ;

DataPlot dpSource = glSource. DataPlo ts(0) ;

Tree tr;

 Graphs

111

tr = dpSource. GetFormat(FPB_ALL, FOB_ALL, true , true) ;

string strTheme = GetAppPath (false) + "plotsettings.XML" ;

tr. Save(strTheme) ;

// Load plot settings from a theme file to a tree, and apply format from

// tree to data plot object.

GraphPage gpDest ("Graph2") ;

GraphLayer glDest = gpDest. Layers(0) ;

DataPlot dpDest = glDest. DataPlots(0) ;

Tree tr2;

tr2. Load(strTheme) ;

dpDest. ApplyFormat(tr2, true , true) ;

7.4.5.2 Copying Format via Tree

Getting plot settings from one data plot to a tree, then apply settings from this tree to another data
plot object.

GraphPage gpSource ("Graph1") ;

GraphLayer glSource = gpSource. Layers(0) ;

DataPlot dpSource = glSource. DataPlots(0) ;

GraphPage gpDest ("Graph2") ;

GraphLayer glDest = gpDest. Layers(0) ;

DataPlot dpDe st = glDest. DataPlots(0) ;

// Get format from source data plot

Tree tr;

tr = dpSource. GetFormat(FPB_ALL, FOB_ALL, true , true) ;

// Apply format to another data plot

dpDest. ApplyFormat(tr, true , true) ;

7.4.6 Setting Format on Scatter Plot

GraphLayer gl = Project. ActiveLayer() ;

DataPlot dp = gl. DataPlots(- 1) ; // Get the active data plot

// Set symbol format

Tree tr;

tr. Root . Symbol . Size . nVal = 12; // Size of symbol

tr. Root . Symbol . Shape. nVal = 1; // Ci rcle

tr. Root . Symbol . Interior . nVal = 1; // Interior type

tr. Root . Symbol . EdgeColor . nVal = SYSCOLOR_RED;

tr. Root . Symbol . FillColor . nVal = SYSCOLOR_BLUE;

// Show vertical droplines

tr. Root . DropLines . Vertical . nVal = 1;

tr. Root . DropLines . VerticalColor . nVal = SYSCOLOR_LTGRAY;

tr. Root . DropLines . VerticalStyle . nVal = 1;

tr. Root . DropLines . VerticalWidth . nVal = 1.5 ;

if (0 == dp. UpdateThemeIDs(tr. Root))

{

Origin C Programming Guide

112

 bool bRet = dp. ApplyFormat(tr, true , true) ;

}

7.4.7 Setting Format on Grouped Line + Symbol Plots

Use Origin C to set the format for grouped plots. The same action can be completed by going into the
Plot Details dialog, under the Group tab. The formats included Line Color, Symbol Type, Symbol
Interior, and Line Style.
The following example shows how to set format on Line and Symbol plots. This group is assumed to
contain 4 data plots.

GraphLayer gl = Project. ActiveLayer() ;

GroupPlot gplot = gl. Groups(0) ; // Get the first group in layer

// the Nester is an array of types of objects to do nested cycling in the

group

// four types of setting to do nested cycling in the group

vector <int > vNester (3) ;

vNester [0] = 0; // cycling line color in the group

vNester [1] = 3; // cycling symbol type in the group

vNester [2] = 8; // cycling symbol interior in the group

gplot. Increment . Nester . nVals = vNester; // set Nester of the grouped plot

// Put format settings to vector for 4 plots

vector <int > vLineColor = { SYSCOLOR_BLUE, SYSCOLOR_OLIVE,

SYSCOLOR_RED,SYSCOLOR_CYAN} ;

vector <int > vSymbolShape = { 1, 3, 5, 8} ;

vector <int > vSymbolInterior = { 1, 2, 5, 0} ;

Tree tr;

tr. Root . Increment . LineColor . nVals = vLineColor; // set line color to

theme tree

tr. Root . Increment . Shape. nVals = vSymbolShape; // set symbol shape to

theme tree

// set symbol interior to theme tree

tr. Root . Increment . SymbolInterior . nVals = vSymbolInterior;

if (0 == gplot. UpdateThemeIDs(tr. Root))

{

 bool bb = gplot. ApplyFormat(tr, true , true) ; // apply theme tree

}

7.4.8 Setting Colormap Settings

 DataPlot class has two overloaded methods to set colormap.

¶ DataPlot::SetColormap(const vector<double> & vz, BOOL bLogScale = FALSE) is just used

to set Z level and scale type (log type or not). The values in vz argument are Z values.

¶ DataPlot::SetColormap(TreeNode& trColormap) is used to set all colormap settings, for

example, Z values, colors, line format and text label format.

This example shows how to set up colormap Z levels on a Contour graph.

GraphLayer gl = Project. ActiveLayer() ;

 Graphs

113

DataPlot dp = gl. DataPlots(0) ;

// Get original colormap Z levels

vector vZs;

BOOL bLogScale = FALSE;

BOOL bRet = dp. GetColormap(vZs, bLogScale) ;

int nLevels = vZs. GetSize() ;

// Decrease Z levels vector an d set back to DataPlot

double min, max;

vZs. GetMinMax(min, max) ;

double dChangeVal = fabs(max - min) * 0.2 ;

bool bIncrease = true ;

if (! bIncrease)

 dChangeVal = 0 - dChangeVal;

min = min - dChangeVal;

max = max - dChangeVal;

double inc = (max - min) / nLevels;

vZs. Data(min, max, inc) ;

dp. SetColormap(vZs) ;

The following example shows how to set up colormap Z levels with log10 scale type.

bool plot_matrix (LPCSTR lpsczMatPage, LPCSTR lpcszGraphTemplate =

"contour"

 , int nPlotID = IDM_PLOT_CONTOUR)

{

 // Get the active matrix object from the specific matrix page

 MatrixPage matPage = Project. MatrixPages(lpsczMatPage) ;

 if (! matPage)

 {

 out_str ("Invalid matrix page") ;

 return false ;

 }

 // get the active sheet in this matrix page

 MatrixLayer ml = matPage. Layers(- 1) ;

 // get the active matrix object in matrixsheet

 MatrixObject mobj = ml. MatrixObjects(- 1) ;

 // Create hidden graph page with template and add plot

 // Create as hidden to avoid unneeded drawing

 GraphPage gp;

 gp. Creat e(lpcszGraphTemplate, CREATE_HIDDEN) ;

 GraphLayer glay = gp. Layers() ;

 int nPlot = glay. AddPlot(mobj, nPlotID) ;

 if (nPlot < 0)

 {

 out_str ("fail to add data plot to graph") ;

 return false ;

 }

 glay. Rescale() ; // rescale x y axes

Origin C Programming Guide

114

 // Construct Z levels vector

 int nNewLevels = 4;

 double min = 0.1 , max = 100000 .;

 double step = (log10(max) - log10(min)) / (nNewLevels - 1) ;

 vector vLevels;

 vLevels. SetSize(nNewLevels) ;

 vLevels. Data(log10(min) , log10(max) , step) ;

 vLevels = 10^vLevels;

 // Setup z levels in percent, not real z values.

 // First value must be 0 and last value must be < 100

 vLevels = 100* (vLevels - min) / (max - min) ;

 Tree tr;

 tr. ColorMap . Details . Levels . dVals = vLevels;

 tr. ColorMap . ScaleType . nVal = 1; // 1 for log10

 tr. ColorMap . Min . dVal = min;

 tr. ColorMap . Max. dVal = max;

 DataPlot dp = glay. DataPlots(nPlot) ;

 bool bRet = dp. SetColormap(tr) ;

 if (! bRet)

 {

 out_str ("fail to set colormap") ;

 return false ;

 }

 gp. Label = "Plot created using temp late: " +

(string) lpcszGraphTemplate;

 gp. TitleShow = WIN_TITLE_SHOW_BOTH;

 gp. SetShow() ; // show it when all it ready

 return true ;

}

Call the above plot_matrix function with coutour template and IDM_PLOT_CONTOUR plot id to plot
contour graph and then set colormap on it.

void plot_contour_ex (LPCSTR lpcszMatPage)

{

 plot_matrix (lpcszMatPage, "contour" , IDM_PLOT_CONTOUR) ;

}

Call the above plot_matrix function with image template and IDM_PLOT_MATRIX_IMAGE plot id to
plot image graph and then set colormap on it.

void plot_image_ex (LPCSTR lpcszMatPage)

{

 plot_matrix (lpcszMatPage, "image" , IDM_PLOT_MATRIX_IMAGE) ;

}

The following example shows how to remove fill color, and set up line color, style, width and text
labels on a Contour graph.

 Graphs

115

GraphLayer gl = Project. ActiveLayer() ;

DataPlot dp = gl. DataPlots(0) ;

Tree tr;

dp. GetColormap(tr) ;

// Remove fill color

tr. ColorFillControl . nVal = 0;

// Set line color

vector <int > vnLineColors;

vnLineColors = t r. Details . LineColors . nVals ;

int nLevels = vnLineColors. GetSize() ;

vnLineColors. Data(1, nLevels, 1) ;

tr. Details . LineColors . nVals = vnLineColors;

// Set line style as Dash for all lines

vector <int > vnLineStyles (vnLineColors. GetSize()) ;

vnLineStyles = 1;

tr . Details . LineStyles . nVals = vnLineStyles;

// Set line width for all lines

vector vdLineWidths (vnLineColors. GetSize()) ;

vdLineWidths = 3;

tr. Details . LineWidths . dVals = vdLineWidths;

// Show/hide labels, show all except that the first two.

vector <int > vnLabels (vnLineColors. GetSize()) ;

vnLabels = 1;

vnLabels [0] = 0;

vnLabels [1] = 0;

tr. Details . Labels . nVals = vnLabels;

// Set back settings to graph

dp. SetColormap(tr) ;

This example shows how to set the format(i.e. color, size, bold, italic) of the text labels on a Contour
graph.

GraphLayer gl = Project. ActiveLayer() ;

DataPlot dp = gl. DataPlots(0) ;

// Get all properties of the related objects of the colormap data plot

Tree tr;

tr = dp. GetFo rmat(FPB_ALL, FOB_ALL, true , true) ;

// Show all labels

vector <int > vnLabels;

vnLabels = tr. Root . ColorMap . Details . Labels . nVals ;

vnLabels = 1; // 0 to hide, 1 to show

tr. Root . ColorMap . Details . Labels . nVals = vnLabels;

// Set the numeric format for labels

t r. Root . NumericFormats . Format . nVal = 0; // Decimal

tr. Root . NumericFormats . DigitsControl . nVal = 0;

tr. Root . NumericFormats . SignificantDigits . nVal = 5; //DecimalPlaces

Origin C Programming Guide

116

tr. Root . NumericFormats . Prefix . strVal = "_" ;

tr. Root . NumericFormats . Suffix . strVal = "Label" ;

t r. Root . NumericFormats . MinArea . nVal = 5; // Labeling Criteria - Min

Area(%)

// Set text format for labels

tr. Root . Labels . Color . nVal = SYSCOLOR_BLUE;

//FontFaceIndex_to_DWORD is used to convert font from GUI index to DWORD

real value

tr. Root . Labels . Face . nVal = FontFaceIndex_to_DWORD (2) ; // choose the 3rd

font in GUI

tr. Root . Labels . Size . nVal = 20;

tr. Root . Labels . WhiteOut . nVal = 1;

tr. Root . Labels . Bold . nVal = 1;

tr. Root . Labels . Italic . nVal = 1;

tr. Root . Labels . Underline . nVal = 1;

if (0 == dp. UpdateThemeIDs(tr. Root))

 dp. ApplyFormat(tr, true , true) ;

7.5 Managing Layers

7.5.1 Creating a Panel Plot

7.5.1.1 Creating a 6 Panel Graph

The following example will create a new graph window with 6 layers, arranged as 2 columns and 3
rows. This function can be run independent of what window is active.

GraphPage gp;

gp. Create("Origin") ;

while (gp. Layers . Count() < 6)

{

 gp. AddLayer() ;

}

graph_arrange_layers (gp, 3, 2) ;

7.5.1.2 Creating and Plotting into a 6 Panel Graph

The following example will import some data into a new workbook, create a new graph window with 6
layers, arranged as 2 columns and 3 rows, and loop through each layer (panel), plotting the imported
data.

// Import data file to worksheet

ASCIMP ai;

Worksheet wks;

string strDataFile = GetOpenBox (FDLOG_ASCII, GetAppPath (true)) ;

if (AscImpReadFileStruct (strDataFile, &ai) == 0)

{

 wks. Create("Origin") ;

 Graphs

117

 wks. ImportASCII(strDataFile, ai) ;

}

// Add XY data from worksheet to graph each layers

GraphPage gp ("Graph1") ; // the graph has the 3x2 panel layers created

above

int index = 0;

foreach (GraphLayer gl in gp. Layers)

{

 DataRange dr;

 dr. Add(wks, 0, "X") ;

 dr. Add(wks, inde x+1, "Y") ;

 if (gl. AddPlot(dr, IDM_PLOT_LINE) >= 0)

 gl. Rescale() ;

 index ++;

}

7.5.2 Adding Layers to a Graph Window

The following example will add an independent right Y axis scale. A new layer is added, displaying
only the right Y axis. It is linked in dimension and the X axis is linked to the current active layer at the
time the layer is added. The new added layer becomes the active layer.
Before compiling the following codes, you need to add graph_utils.c to your current workspace. Run
Labtalk command "Run.LoadOC(Originlab\graph_utils.c)" to do this.

#include <.. \ Originlab \ graph_utils. h>// Needed for page_add_layer function

GraphLayer gl = Project. ActiveLayer() ;

GraphPage gp = gl. GetPage() ;

bool bBottom = f alse , bLeft = false , bTop = false , bRight = true ;

int nLinkTo = gl. GetIndex() ; // New added layer link to the active layer

bool bActivateNewLayer = true ;

int nLayerIndex = page_add_layer (gp, bBottom, bLeft, bTop, bRight,

ADD_LAYER_INIT_SIZE_POS_SAME_AS_PREVIOUS, bActivateNewLayer, nLinkTo) ;

7.5.3 Hiding Layers Except Active One

GraphPage gp ("Graph1") ;

if (gp)

{

 GraphLayer glActive = gp. Layers(- 1) ; // - 1 to get active layer

 foreach (GraphLayer gl in gp. Layers)

 {

 if (gl. GetIndex() ! = glActive. GetIndex())

 gl. Show(false) ;

 }

}

7.5.4 Arranging the Layers

Origin C Programming Guide

118

The following example will arrange the existing layers on the active graph into two rows by three
columns. If the active graph does not already have 6 layers, it will not add any new layers. It arranges
only the layers that exist.

GraphLayer gl = Project. ActiveLayer() ;

GraphPage gp = gl. GetPage() ;

int nRows = 3, nCols = 2;

graph_arrange_layers (gp, nRows, nCols) ;

7.5.5 Moving a Layer

The following example will left align all layers in the active graph window, setting their position to be
15% from the left-hand side of the page.

GraphLayer gl = Project. ActiveLayer() ;

GraphPage gp = gl. GetPage() ;

int nRows = gp. Layers . Count() ;

int nCols = 1;

stLayersGridFormat stFormat;

stFormat. nXGap = 0; // the X direction gap of layers

stFormat. nYGap = 5; // the Y direction gap of layers

stFormat. nLeftMg = 15; // left margin

stFormat. nRightMg = 10;

stFormat. nTopMg = 10;

stFormat. nBottom Mg = 10;

page_arrange_layers (gp, nRows, nCols, &stFormat) ;

7.5.6 Resizing a Layer

The following example will resize the current layer to reduce the width and height to half of the
original size.
Before compiling the following codes, you need to add graph_utils.c to your current workspace. Run
Labtalk command "Run.LoadOC(Originlab\graph_utils.c)" to do this.

#include <.. \ Originlab \ graph_utils. h> // Needed for layer_set_size

function

GraphLayer gl = Project. ActiveLay er() ;

// get the original size of graph layer

double dWidth, dHeight;

layer_get_size (gl, dWidth, dHeight) ;

// resize layer

dWidth / = 2;

dHeight / = 2;

layer_set_size (gl, dWidth, dHeight) ;

7.5.7 Swap two Layers

The following example will swap the position on the page of layers indexed 1 and 2.

 Graphs

119

Before compiling the following codes, you need to add graph_utils.c to your current workspace. Run
Labtalk command "Run.LoadOC(Originlab\graph_utils.c)" to do this.

#include <.. \ Originlab \ graph_utils. h> // Needed for layer_swap_position

function

GraphPage gp ("Graph1") ;

GraphLayer gl1 = gp. Layers(0) ;

GraphLayer gl2 = gp. Layers(1) ;

layer_swap_position (gl1, gl2) ;

The following example will swap the position on the page of layers named Layer1 and Layer2.

GraphPage gp ("Graph1") ;

GraphLayer gl1 = gp. Layers("Layer1") ;

GraphLayer gl2 = gp. Layers("Layer2") ;

layer_swap_position (gl1, gl2) ;

7.5.8 Aligning Layers

The following example will bottom align layer 2 with layer 1 in the active graph window.
Before compiling the following codes, you need to add graph_utils.c to your current workspace. Run
Labtalk command "Run.LoadOC(Originlab\graph_utils.c)" to do this.

#include <.. \ Originlab \ graph_utils. h> // Ne eded for layer_aligns function

// Get the active graph page

GraphLayer gl = Project. ActiveLayer() ;

GraphPage gp = gl. GetPage() ;

GraphLayer gl1 = gp. Layers(0) ;

GraphLayer gl2 = gp. Layers(1) ;

// Bottom align layer 2 with layer 1

layer_aligns (gl1, gl2, PO S_BOTTOM) ;

7.5.9 Linking Layers

The following example will link all X axes in all layers in the active graph to the X axis of layer 1. The
Units will be set to a % of Linked Layer.
Before compiling the following codes, you need to add graph_utils.c to your current workspace. Run
Labtalk command "Run.LoadOC(Originlab\graph_utils.c)" to do this.

#include <.. \ Originlab \ graph_utils. h> // Needed for layer_set_link

function

GraphLayer gl = Project. ActiveLayer() ;

GraphPag e gp = gl. GetPage() ;

GraphLayer gl1 = gp. Layers(0) ; // Layer 1

foreach (GraphLayer glOne in gp. Layers)

{

 int nUnit = M_LINK; // Set layer unit as % of linked layer

 if (glOne ! = gl1)

Origin C Programming Guide

120

 layer_set_link (glOne, gl1. GetIndex() , LINK_STRAIGHT,

LINK_NONE, &nUnit) ;

}

7.5.10 Setting Layer Unit

int nUnit = M_PIXEL;

GraphLayer gl = Project. ActiveLayer() ;

// Get the current position

double dPos [TOTAL_POS] ;

gl. GetPosition(dPos) ;

// Convert position to the specified unit

gl. Unit sConvert(nUnit, dPos) ;

// Set position with unit

gl. SetPosition(dPos, nUnit) ;

7.6 Creating and Accessing Graphical Objects

7.6.1 Creating Graphical Object

Add a Graphical Object, for example: text, or a rectangle or line.
The following example shows how to add a rectangle to the active graph. For other Graph object
types see GROT_* (for example: GROT_TEXT, GROT_LINE, GROT_POLYGON) in the oc_const.h
file.

GraphLayer gl = Project. ActiveLayer() ;

string strName = "MyRect" ;

GraphObject goRect = gl. CreateGraphObject(GROT_RECT, strName) ;

Add a text label on the current graph window:

GraphLayer gl = Project. ActiveLayer() ;

GraphObje ct go = gl. CreateGraphObject(GROT_TEXT, "MyText") ;

go. Text = "This is a test" ;

The example below shows how to add an arrow to a graph. The object type of an arrow is
GROT_LINE, the same type as a line. And for both lines and arrows, the number of data points
required is 2.

GraphPage gp;

gp. Create() ;

GraphLayer gl = gp. Layers() ;

string strName = "MyArrow" ; // the name of the graph object

GraphObject go = gl. CreateGraphObject(GROT_LINE, strName) ;

go. Attach = 2; // change attach mode to Layer and Scale

Tree tr;

tr. Root . Dimension . Units . nVal = 5; // Set unit as Scale

 Graphs

121

// Set position by scale value

vector vx = { 2, 6} ;

vector vy = { 6, 2} ;

tr. Root . Data . X. dVals = vx;

tr. Root . Data . Y. dVals = vy;

tr. Root . Arrow . Begin . Style . nVal = 0;

tr. Root . Arrow . End. Style . nVal = 1;

if (0 == go. UpdateThemeIDs(tr. Root))

{

 go. ApplyFormat(tr, true , true) ;

}

The example below shows how to add a curved arrow to a graph. For a curved arrow, the number of
data points required is 4.

GraphPage gp;

gp. Create() ;

GraphLayer gl = gp. Layers() ;

string strName = "MyArrow" ; // the name of the graph object

GraphObject go = gl. CreateGraphObject(GROT_LINE4, strName) ;

go. Attach = 2; // change attach mode to Layer and Scale

Tree tr;

tr. Root . Dimension . Units . nVal = 5; // Set unit as Scale

// Set position by scale value

vector vx = { 2, 4, 6, 5} ;

vector vy = { 7, 6.9 , 6.8 , 2} ;

tr. Root . Data . X. dVals = vx;

tr. Root . Data . Y. dVals = vy;

tr. Root . Arrow . Begin . Style . nVal = 0;

tr. Root . Arrow . End. Style . nVal = 1;

if (0 == go. UpdateThemeIDs(tr. Root))

{

 go. ApplyFormat(tr, true , true) ;

}

7.6.2 Setting Properties

Set Properties for a Graphical Object, for example, text font, color, line width.

// Set color and font for graph object

GraphLayer gl = Project. ActiveLayer() ;

GraphObject goText = gl. GraphObjects("Text") ;

goText. Text = "This is a test" ;

goText. Attach = 2; // Attach to layer scale

Tree tr;

Origin C Programming Guide

122

tr. Root . Color . nVal = SYSCOLOR_RED; // the color of text

tr. Root . Font . Bold . nVal = 1;

tr. Root . Font . Italic . nVal = 1;

tr. Root . Font . Underline . nVal = 1;

tr. Root . Font . Size . nVal = 30; // font size of text

if (0 == goText. UpdateThemeIDs(tr. Root))

{

 bool bRet = goText. ApplyFormat(tr, true , true) ;

}

7.6.3 Setting Position and Size

GraphLayer gl = Project. ActiveLayer() ;

GraphObject go = gl. GraphObjects("Rect") ;

go. Attach = 2; // Attach to layer scale

// Move text object to t he layer left top

Tree tr;

tr. Root . Dimension . Units . nVal = UNITS_SCALE;

tr. Root . Dimension . Left . dVal = gl. X. From; // Left

tr. Root . Dimension . Top. dVal = gl. Y. To/ 2; // Top

tr. Root . Dimension . Width . dVal = (gl. X. To - gl. X. From) / 2; // Width

tr. Root . Dimension . Height . dVal = (gl. Y. To - gl. Y. From) / 2; // Height

if (0 == go. UpdateThemeIDs(tr. Root))

{

 bool bRet = go. ApplyFormat(tr, true , true) ;

}

7.6.4 Updating Attach Property

The attach property has 3 choices, Page, Layer Frame, and Layer Scale.

// Attach graph object to the different object:

// 0 for layer, when move layer, graph object will be moved together;

// 1 for page, when move layer, not effect on graph object;

// 2 for layer scale, when change the scale, the positi on of graph object

// will be changed according.

go. Attach = 2;

7.6.5 Getting and Setting Disable Property

// To check disable properties, for example, movable, selectable.

Tree tr;

tr = go. GetFormat (FPB_OTHER, FOB_ALL, true , true) ;

DWORD dwStats = tr. Root . States . nVal ;

// To check vertical and horizontal movement.

// More property bits, see GOC_* in oc_const.h file.

if ((dwStats & GOC_NO_VMOVE) && (dwStats & GOC_NO_HMOVE))

{

 out_str ("This graph o bject cannot be move") ;

}

 Graphs

123

7.6.6 Programming Control

// 1. Add a line

GraphLayer gl = Project. ActiveLayer() ;

GraphObject go = gl. CreateGraphObject(GROT_LINE) ;

go. Attach = 2; // Set attach mode to layer scale

go. X = 5; // Set init position to X = 5

// 2. Set line properties

Tree tr;

tr. Root . Direction . nVal = 2; // 1 for Horizontal, 2 for vertical

tr. Root . Span. nVal = 1; // Span to layer

tr. Root . Color . nVal = SYSCOLOR_RED; // Line color

if (0 == go. UpdateThemeI Ds(tr. Root))

{

 go. ApplyFormat(tr, true , true) ;

}

// 3. Set event mode and LT script.

// Move line will print out line position, x scale value.

Tree trEvent;

trEvent. Root . Event . nVal = GRCT_MOVE;// More other bits, see GRCT_* in

oc_const.h

trEvent. Root . Script . strVal = "type - a $(this.X)" ;

if (0 == go. UpdateThemeIDs(trEvent. Root))

{

 go. ApplyFormat(trEvent, true , true) ;

}

7.6.7 Updating Legend

A legend is a graphical object named "Legend" on a graph window. After adding/removing data plots,
we can use the legend_update function to refresh the legend according to the current data plots.

// Simple usage here, just used to refresh legend.

// Search this function in OriginC help to see the description of other

arguments

// for more usages.

legend_update (gl) ; // gl is a GraphLayer object

7.6.8 Adding Table Object on Graph

// 1. Create the worksheet with Table template

Worksheet wks;

wks. Create("Table" , CREATE_HIDDEN) ;

WorksheetPage wksPage = wks. GetPage() ;

// 2. Set table size and fill in text

wks. SetSize(3, 2) ;

wks. SetCell (0, 0, "1") ;

wks. SetCell(0, 1, "Layer 1") ;

http://www.originlab.com/doc/OriginC/ref/legend_update

Origin C Programming Guide

124

wks. SetCell(1, 0, "2") ;

wks. SetCell(1, 1, "Layer 2") ;

wks. SetCell(2, 0, "3") ;

wks. SetCell(2, 1, "Layer 3") ;

//3. Add table as link to graph

GraphLayer gl = Project. ActiveLayer() ;

GraphObject grTable = gl. Cr eateLinkTable(wksPage. GetName() , wks) ;

125

88 Working with Data

8.1 Working with Data

This section covers the following topics:

¶ Numeric Data

¶ String Data

¶ Date and Time Data

8.2 Numeric Data

This section gives examples of working with numeric data in Origin C. Numeric data can be stored in
variables of the following data types:

1. double

2. integer

3. vector

4. matrix

Numeric data and strings can be stored in the nodes of a tree, provided the nodes have one of the
data types above.
Note:Values such as 0.0, NANUM (missing value) and values between -1.0E-290 to 1.0E-290 will be
evaluated to be False in logic statement.

8.2.1 Missing Values

As important as numeric data is, it is also important to be able to represent missing data. Origin C
defines the NANUM macro for comparing and assigning values to missing data. Missing values are
only supported with the double data type.

double d = NANUM;

if (NANUM == d)

 out_str ("The value is a missing value.") ;

Origin C also provides the is_missing_value function for testing if a value is a missing value.

if (is_missing_value (d))

http://www.originlab.com/doc/OriginC/guide/Numeric-Data
http://www.originlab.com/doc/OriginC/guide/String-Data
http://www.originlab.com/doc/OriginC/guide/Date-and-Time-Data
http://www.originlab.com/doc/OriginC/ref/is_missing_value

Origin C Programming Guide

126

 out_str ("The value is a missing value.") ;

8.2.2 Precision and Comparison

In the following example code, the prec and round functions are used to control the precision of
double type numeric data. The is_equal function is used to compare two pieces of double type
numeric data.

double dVal = PI; // PI defined as 3.1415926535897932384626

// convert the double value to have 6 signifi cant digits

int nSignificantDigits = 6;

printf("%f \ n" , prec (dVal, nSignificantDigits)) ;

// force the double value to only have two decimal digits

uint nDecimalPlaces = 2;

double dd = round (dVal, nDecimalPlaces) ;

printf("%f \ n" , dd) ;

// compare two doubl e values

if (is_equal (dd, 3.14))

{

 out_str ("equal \ n") ;

}

else

{

 out_str ("not equal \ n") ;

}

8.2.3 Convert Numeric to String

// assign int type numeric to string

string str = 10;

out_str (str) ;

int nn = 0;

str = nn;

out_str (str) ;

// convert double type numeric to string

double dd = PI;

str = ftoa (dd, "*") ; // Use "*" for Origin's global setting in Options

dialog

out_str (str) ;

str = ftoa (dd, "*8") ; // Use "*8" for 8 significant

out_str (str) ;

8.2.4 Vector

// One - Dimensional array with basic data type, for example, double, int,

string,

// complex.

vector vx, vy;

 Working with Data

127

int nMax = 10;

vx. Data(1, nMax, 1) ; // assign value to vx fr om 1 to 10 with increment 1

vy. SetSize(nMax) ; // set size(10) to vy

for (int nn = 0; nn < nMax; nn ++)

{

 vy [nn] = rnd () ; // assign random data to each item in vy

 printf("index = %d, x = %g, y = %g\ n" , nn +1, vx [nn] , vy [nn]) ;

}

// Access the data in a work sheet window

Worksheet wks = Project. ActiveLayer() ;

Column col (wks, 0) ;

vector & vec = col. GetDataObject() ;

vec = vec * 0.1 ; // Multiply 0.1 by each piece of data in vec

vec = sin(vec) ; // Find the sine of each piece of data in vec

8.2.5 Matrix

// Two - Dimensional array with basic data type, for example, double, int,

complex,

// but not string.

matrix mat (5, 6) ;

for (int ii = 0; ii < 5; ii ++)

{

 for (int jj = 0; j j < 6; jj ++)

 {

 mat [ii][jj] = ii + jj;

 printf("%g\ t " , mat [ii][jj]) ;

 }

 printf(" \ n") ; // new line

}

// Access the data in matrix window

MatrixLayer ml = Project. ActiveLayer() ;

MatrixObject mo = ml. MatrixObjects(0) ;

matrix & mat = mo.GetDataObject() ;

mat = mat + 0.1 ; // Add 0.1 for the each data in matrix

8.2.6 TreeNode

The Origin C TreeNode class provides several methods for constructing multi-level trees, traversing
trees and accessing the value/attributes of tree nodes.

Tree tr;

// Access the value of a tree node

TreeNode trName = tr. AddNode("Name") ;

trName. strVal = "Jane" ;

tr. UserID . nVal = 10;

Origin C Programming Guide

128

vector <string > vsBooks = { "C++" , "MFC" } ;

tr. Books . strVals = vsBooks;

out_tree (tr) ; // output tree

8.2.7 Complex

complex cc (1.5 , 2.2) ;

cc. m_re = cc. m_re +1;

cc. m_im = cc. m_im * 0.1 ;

out_complex ("cc = " , cc) ; // output cc = 2.500000+0.220000i

// Access complex dataset

Worksheet wks = Project. ActiveLayer() ;

Column col (wks, 1) ;

if (FSI_COMPLEX == col. GetInternalDataType())

{

 vector <complex >& vcc = col. GetDataObject() ;

 vcc [0] = 0.5 + 3.6i;

}

// Access complex matrix

MatrixLayer ml = Project. ActiveLayer() ;

MatrixObject mo = ml. MatrixObjects() ;

if (FSI_COMPLEX == mo.GetIn ternalDataType())

{

 matrix <complex >& mat = mo.GetDataObject() ;

 mat [0][0] = 1 + 2.5i;

}

8.2.8 DataRange

The DataRange class is a versatile mechanism to get and put data in a Worksheet, Matrix or Graph
window.

8.2.8.1 Data Range in Worksheet

For a Worksheet, a data range can be specified by column/row index as one column, one row, any
sub block range, one cell or entire Worksheet.

// Construct a data range on the active worksheet, all columns and rows

// from 1st row to 5th row.

Worksheet wks = Project. ActiveLayer() ;

int r1 = 0, c1 = 0, r2 = 4, c2 = - 1;

DataRange dr;

// range name should be make sense, for example, "X", "Y",

// "ED"(Y error), "Z". If the data range is not belong to dependent

// or independent type, de fault can be "X".

dr. Add("X" , wks, r1, c1, r2, c2) ;

Get data from data range to vector. DataRange::GetData supports multiple overloaded methods. For
example:

http://www.originlab.com/doc/OriginC/ref/DataRange-GetData

 Working with Data

129

vector vData;

int index = 0; // range index

dr. GetData(&vData, index) ;

8.2.8.2 Data Range in Matrixsheet

For a Matrix window, the data range can be a matrix object index.

MatrixLayer ml = Project. ActiveLayer() ;

DataRange dr;

int nMatrixObjectIndex = 0;

dr. Add(ml, nMatrixObjectIndex, "X") ;

Get data from data range to matrix.

matrix mat;

dr. GetData(mat) ;

8.2.8.3 Data Range in Graph

For a Graph window, the data range can be one data plot, or a sub range of one data plot.

GraphLayer gl = Project. ActiveLayer() ;

DataPlot dp = gl. DataPlots() ; // Get active data plot

DataRange dr;

int i1 = 0; // from the first data point

int i2 = - 1; // to the last data point

dp. GetDataRange(dr, i 1, i2) ;

Get XY data from data plot to vector by data range object.

vector vx, vy;

DWORD dwRules = DRR_GET_DEPENDENT;

dr. GetData(dwRules, 0, NULL, NULL, &vy, &vx) ;

8.2.8.4 Data Range Control

OriginC supports a GetN dialog interactive control to choose a data range.

#include <GetNBox. h>

// Open a dialog to choose a range from one graph data plot.

// And construct a data r ange object by this selection.

GETN_TREE(tr)

GETN_INTERACTIVE(Range1, "Select Range" , "")

if (GetNBox (tr)) // returns true if click OK button

{

 DataRange dr;

 dr. Add("Range1" , tr. Range1. strVal) ;

 vector vData;

 int index = 0; // range index

Origin C Programming Guide

130

 dr. Get Data(&vData, index) ; // The data in vData is the selected data

points

}

8.3 String Data

8.3.1 String Variables

string str1; // Declare a string variable named str1

str1 = "New York " ; // Assigns to str1 a character sequence

string str2 = "Tokyo" ; // Declare a string variable and assignment

// Declare a character array and initialize with a character sequence

char ch [] = "This is a test!" ;

// Declare a character array, set size and initialize with a character

sequence

char chArr [255] = "Big World." ;

8.3.2 Convert String to Numeric

string str = PI; // Assigns a numeric value to string variable

// Convert string to numeric

double dd = ato f(str, true) ;

out_double ("dd=" , dd) ; // dd=3.14159

// Convert string to complex

str = "1+2.5i" ;

complex cc = atoc (str) ;

out_complex ("cc = " , cc) ; // cc = 1.000000+2.500000i

// Convert string to int

str = "100" ;

int nn = atoi(str) ;

out_int ("nn = " , nn) ; // nn = 100

8.3.3 Append Numeric/String to another String

// Append numeric or string to another string

// In Origin C, support use '+' to add a numeric/string type const or

variable

string str = "The area is " + 30.7 ; // Append a double type const to

string

str += " \ n" ; // Append a string const to string variable

int nLength = 10;

str += "The length is " + nLength; // Append a int type variable to string

 Working with Data

131

out_str (str) ;

8.3.4 Find Sub String

// Find and get sub string

string str = "[Book1]Sheet1!A:C" ;

int begi n = str. Find(']') ; // Find and return the index of ']'

begin ++; // Move to the next character of]

int end = str. Find('!' , begin) ; // Find and return the index of '!'

end -- ; // Move the previous character of !

// Get the sub string with the begin index and substring length

int nLength = end - begin + 1;

string strSheetName = str. Mid(begin, nLength) ;

out_str (strSheetName) ; // Should output "Sheet1"

8.3.5 Replace Sub String

// Find and replace one character

string str ("A+B+C+") ;

int nCount = str. Replace('+' , ' - ') ;

out_int ("" , nCount) ; // nCount will be 3

out_str (str) ; // "A - B- C- "

// Find and replace a character string

str = "I am a student. \ nI am a girl." ;

nCount = str. Replace("I am" , "You are") ;

out_int ("" , nCount) ; // nCount will be 2

out_str (str) ;

8.3.6 Path String Functions

8.3.6.1 File Path String

// string::IsFile is used to check the file if exist

string strFile = "D: \ \ TestFolder \ \ abc.txt" ;

bool bb = strFile. IsFile() ;

printf("The file %s is %sexist. \ n" , str File, bb ? "" : "NOT ") ;

// GetFilePath function is used to extract the path from a full path

string

string strPath = GetFilePath (strFile) ;

out_str (strPath) ;

// GetFileName function is used to extracts the file name part

// from a string of full path

bool bRemoveExtension = true ;

string strFileName = GetFileName (strFile, bRemoveExtension) ;

out_str (strFileName) ;

// string::IsPath to check if the path is exist

bb = strPath. IsPath() ;

out_int ("" , bb) ;

Origin C Programming Guide

132

8.3.6.2 Origin System Path

string strSysPath = GetOriginPath (ORIGIN_PATH_SYSTEM) ;

printf("Origin System Path: %s\ n" , strSysPath) ;

string strUserPath = GetOriginPath (ORIGIN_PATH_USER) ;

printf("User File Path: %s\ n" , strUserPath) ;

8.4 Date and Time Data

Origin C provides support for date and time data.

8.4.1 Get Current Date Time

// Get current time

time_t aclock;

time(&aclock) ;

// Converts a time value and corrects for the local time zone

TM tmLocal;

convert_time_to_local (&aclock , &tmLocal) ;

// Convert time value from TM format to system time format

SYSTEMTIME sysTime;

tm_to_systemtime (&tmLocal, &sysTime) ;

// Get date string from system time

char lpcstrTime [100] ;

if (systemtime_to_date_str (&sysTime, lpcstrTime,

LDF_SHORT_AND_HHMM_SEPARCOLON))

 printf("Current Date Time is %s\ n" , lpcstrTime) ;

8.4.2 Convert Julian Date to String

SYSTEMTIME st;

GetSystemTime (&st) ; // Gets current date time

double dJulianDate;

SystemTimeToJulianDate (&dJulianDate, &st) ; // Convert to Julian date

// Convert Julian date to string wit h the specified format

string strDate = get_date_str (dJulianDate, LDF_SHORT_AND_HHMM_SEPARCOLON) ;

out_str (strDate) ;

8.4.3 Convert String to Julian Date

string strDate = "090425 17:59:59" ;

double dt = str_to_date (strDate, LDF_YYMMDD_AND_HHMMSS) ;

133

99 Projects

9.1 Projects

The Origin C Project class is used for accessing the various high level objects contained in an Origin
project. This includes workbooks, matrixbooks, graphs, notes, folders, and more.

This section covers the following topics:

¶ Managing Projects

¶ Managing Folders

¶ Accessing Pages

¶ Accessing Metadata

¶ Accessing Operations

9.2 Managing Projects

Origin C provides the Project class for opening, saving, and appending projects and for accessing the
various objects contained in a project. The Project class contains collections for all the page types
and loose data sets. There are methods to get the active objects such as the active curve, layer, and
folder.

9.2.1 Open and Save a Project

The code below demonstrates saving a project, starting a new project, and opening a saved project.

string strPath = "c: \ \ abc.opj" ; // Project path and name

Project. Save(strPath) ; // Save current project

Project. Open() ; // Start a new project

Project. Open(strPath) ; // Op en saved project

9.2.2 Append One Project to Another

You can append a project to the current project by using the optional second argument of the
Project::Open method. The appended project's folder structure will be put into the current project's
active folder.

http://www.originlab.com/doc/OriginC/ref/Project
http://www.originlab.com/doc/OriginC/guide/Managing-Projects
http://www.originlab.com/doc/OriginC/guide/Managing-Folders
http://www.originlab.com/doc/OriginC/guide/Accessing-Pages
http://www.originlab.com/doc/OriginC/guide/Accessing-Metadata
http://www.originlab.com/doc/OriginC/guide/Accessing-Operations
http://www.originlab.com/doc/OriginC/ref/Project-Open

Origin C Programming Guide

134

Project. Open("c: \ \ abc.opj" , OPJ_OPEN_APPEND) ;

9.2.3 The Modified Flag

When a project is modified, the IsModified flag is set internally by Origin. Origin C allows setting and
clearing the IsModified flag. When a project is being closed, this flag is checked. If the flag is set
then Origin will ask the user if they want to save their changes. If your Origin C code made changes
that you know should not be saved, then you may want to clear the flag to prevent Origin from
prompting the user.

if (Project. IsModified())

{

 // Set the active project as not modified. We do this when we k now

// we do not want to save the changes and want to prevent Origin

 // from prompting the user about unsaved changes.

 Project. ClearModified() ;

 // Start a new project, knowing the user will not be prompted about

 // unsaved changes in t he active project.

 Project. Open() ;

}

9.3 Managing Folders

Pages in an Origin project (workbooks, matrix books, and graphs) can be organized in a hierarchical
folder structure, visible in Origin's Project Explorer. The Origin C Folder class allows you to create,
activate, select, and arrange folders.

9.3.1 Create a Folder and Get Its Path

Folder fldRoot, fldSub;

fldRoot = Project. RootFolder ;

// Add a sub folder in root folder with name

fldSub = fldRoot. AddSubfolder("MyFolder") ;

printf("Folder added successfully, path is %s\ n" , fldSub. GetPath()) ;

9.3.2 Get the Active Folder

Folder fldActive;

fldActive = Project. ActiveFolder() ;

// Add a sub folder to it

Folder fldSub;

fldSub = fldActive. AddSubfolder("MyFolder") ;

printf("Folder added successfully, path is %s\ n" , fld Sub. GetPath()) ;

9.3.3 Activate a Folder

// activate root folder

Folder fldRoot = Project. RootFolder ;

http://www.originlab.com/index.aspx?s=8&lm=150&pid=549

 Projects

135

fldRoot. Activate() ;

// activate the specified sub folder

Folder fldSub ("/MyFolder") ;

fldSub. Activate() ;

9.3.4 Get Path for a Specific Page

GraphPage gp ("Graph1") ;

if (gp. IsValid())

{

 Folder fld = gp. GetFolder() ;

 out_str (fld. GetPath()) ;

}

9.3.5 Move a Page/Folder to Another Location

Folder::Move is used to move a window (Worksheet, Graph...) or folder to another location. The
following example shows how to move a folder.

// Add two sub folders to root folder

Fold er subfld1 = Project. RootFolder . AddSubfolder("sub1") ;

Folder subfld2 = Project. RootFolder . AddSubfolder("sub2") ;

// Move the sub2 folder under the sub1 folder

if (! Project. RootFolder . Move(subfld2. GetName() , "/" +subfld1. GetName() +"/" ,

true))

 printf("move folder failed!") ;

9.4 Accessing Pages

Pages in Origin consist of workbooks, matrix books and graphs, and are the core objects in a project.
Origin C allows you to access a page by name or by index, or access all instances of a particular
page type in the current project using the foreach statement.

9.4.1 Access a Page by Name and Index

 All pages have names, which can be used to access them, as in the following example:

// Access a page by its name

GraphPage gp1 ("Graph1") ;

// Access a page by its zero based index

GraphPage gp2 = Project. GraphPages(0) ; // 0 for first page

9.4.2 Get the Active Page and Layer

In a workbook page, a layer is a worksheet; in a graph page, a layer is a pair of axes; in a matrix
page, a layer is a matrix sheet.
If you want to access the page associated with a particular layer, such as the active layer, it can be
done with the Layer::GetPage method:

http://www.originlab.com/doc/OriginC/ref/Folder-Move
http://www.originlab.com/doc/OriginC/ref/Layer-GetPage

Origin C Programming Guide

136

// get active layer

GraphLayer gl = Project. ActiveLayer() ;

// get active page from layer

GraphPage gp = gl . GetPage() ;

9.4.3 Activate One Page

If want to activate a window, you can use PageBase::SetShow(PAGE_ACTIVATE) to cause the
window to be activated.

// attach to a graph window named Graph2

GraphPage gp ("Graph2") ;

// set the window to be active

gp. SetShow(PAGE_ACTIVATE) ;

9.4.4 Using foreach

The foreach statement simplifies the process of looping through all the items in a collection. The
project contains all the pages in various collections.

// Loop through all workbook pages in the current project

// and output the name of each page.

foreach (WorksheetPage wksPage in Project. WorksheetPages)

{

 out_str (wksPage. GetName()) ;

}

// Loop through all matrixbook pages in the current project

// and output the name of each page.

foreach (MatrixPage matPage in Project. MatrixPages)

{

 out_str (matPage. GetName()) ;

}

// Loop through all graph pages in the current project

// and output t he name of each page.

foreach (GraphPage gp in Project. GraphPages)

{

 out_str (gp. GetName()) ;

}

// Loop through all pages in the current project

// and output the name of each page.

foreach (PageBase pg in Project. Pages)

{

 out_str (pg. GetName()) ;

}

9.5 Accessing Metadata

Metadata is information which refers to other data. Examples include the time at which data was
originally collected, the operator of the instrument collecting the data and the temperature of a sample
being investigated. Metadata can be stored in Projects, Pages, Layers and Columns.

 Projects

137

9.5.1 Access DataRange

The Origin C Project class provides methods to add, get, and remove an Origin C DataRange object
to and from the current project.

Worksheet wks = Project. ActiveLayer() ;

DataRange dr; // Construct the range object

dr. Add("X" , wks, 0, 0, - 1, - 1) ; // Add whole worksheet to range

dr . SetName("Range1") ; // Set range name

int UID = dr. GetUID(TRUE) ; // Get Unique ID for the range object

int nn = Project. AddDataRange(dr) ; // Add range to project

In the Command Window or Script Window you can use the LabTalk command list r to list all the
DataRange objects in the current project.

9.5.2 Access Tree

9.5.2.1 Access a Tree in a Project

Add Tree

This code declares a variable of type tree, assigns some data to nodes of the tree, and adds the tree
to the current project.

Tree tr;

tr. FileInfo . name. strVal = "Test.XML" ;

tr. FileInfo . size . nVal = 255 ;

// add tree variable to project

int nNumTrees = Project. AddTree("Test" , tr) ;

out_int ("The number of trees in project: " , nNumTrees) ;

Get Tree

 Likewise, a similar code extracts data stored in an existing tree variable named Test and puts it into
a new tree variable named trTest:

// get tree from project by name

Tree trTest;

if (Project. GetTree("Test" , trTest))

 out_tree (trTest) ;

Get the Names of All LabTalk Trees

 The Project::GetTreeNames method gets the names of all LabTalk tree variables in the project.
Here, the names are assigned to a string vector; the number of strings assigned is returned as an
integer.

vector <string > vsTreeNames;

http://www.originlab.com/doc/OriginC/ref/Project-GetTreeNames

Origin C Programming Guide

138

int nNumTrees = Project. GetTreeNames(vsTreeName s) ;

9.5.2.2 Access Tree in a Worksheet

OriginObject::PutBinaryStorage is used to put a tree into many types of Origin object, for example,
a WorksheetPage, Worksheet, Column, GraphPage, or MatrixPage.

Add Tree

 Keep an active worksheet window in the current project, to run the example code below. After
running the code to add a user tree, right click on the title of the worksheet window, choose Show
Organizer, and you will see the added user tree show up in the panel on the right.

Worksheet wks = Project. ActiveLayer() ;

if (wks)

{

 Tree tr;

 tr. name. strVal = "Jacky" ;

 tr. id . nVal = 7856 ;

 // put tree with name wksTree to worksheet object

 string strStorageName = "wksTree" ;

 wks. PutBinaryStorage(strStorageName, tr) ;

}

Get Tree

 The OriginObject::GetBinaryStorage method is used to get a tree from an Origin object by name.

Worksheet wks = Project. ActiveLayer() ;

if (wks)

{

 Tree tr;

 string strStorageName = "wksTree " ;

 // if the tree named wksTree is existed, return true.

 if (wks. GetBinaryStorage(strStorageName, tr))

 out_tree (tr) ; // output tree

}

Get the Names of All Trees

 The OriginObject::GetStorageNames method gets the names of everything in storage in an Origin
object. There are two storage types: INI and binary. Trees belong to binary storage, and the following
example code shows how to get binary storage from a Worksheet.

Worksheet wks = Project. ActiveLayer() ;

if (wks)

{

 // get the names of all binary type storage

 vector <string > vsNames;

 wks. GetStorageNames(vsNames, STORAGE_TYPE_BINARY) ;

 for (int nn = 0; nn < vsNames. GetSize() ; nn ++)

http://www.originlab.com/doc/OriginC/ref/OriginObject-PutBinaryStorage
http://www.originlab.com/doc/OriginC/ref/OriginObject-GetBinaryStorage
http://www.originlab.com/doc/OriginC/ref/OriginObject-GetStorageNames

 Projects

139

 out_str (vsNames[nn]) ;

}

9.5.2.3 Access Tree in a Worksheet Column

For setting and getting a tree in a Worksheet Column, use the same methods for setting and getting a
tree in a Worksheet, as described above.

Add Tree

Worksheet wks = Project. ActiveLayer() ;

Column col (wks, 0) ;

Tree tr;

tr. test . strVal = "This is a column" ;

tr. value . dVal = 0.15 ;

col. PutBinaryStorage("colTree" , tr) ;

Get Tree

Worksheet wks = Project. ActiveLayer() ;

Column col (wks, 0) ;

Tree tr;

if (col. GetBinaryStorage("colTree" , tr))

 out_tree (tr) ;

Get the Names of All Trees

Worksheet wks = Project. ActiveLayer() ;

Column col (wks, 0) ;

// get the names of all binary type storage

vector <string > vsNames;

col. GetStorageNames(vsNames, STORAGE_TYPE_BINARY) ;

for (int nn = 0; nn < vsNames. GetSize() ; nn ++)

 out_str (vsNames[nn]) ;

9.5.2.4 Access Import File Tree Nodes

After importing data into a worksheet, Origin stores metadata in a special tree-like structure at the
page level. Basic information about the file can be retrieved and put into a tree.

Worksheet wks = Project. ActiveLayer() ;

Works heetPage wksPage = wks. GetPage() ;

storage st;

st = wksPage. GetStorage("system") ;

Tree tr;

tr = st;

double dDate = tr. Import . FileDate . dVal ;

Origin C Programming Guide

140

printf("File Date: %s\ n" , get_date_str (dDate,

LDF_SHORT_AND_HHMMSS_SEPARCOLON)) ;

printf("File Name: %s \ n" , tr. Import . FileName . strVal) ;

printf("File Path: %s\ n" , tr. Import . FilePath . strVal) ;

9.5.2.5 Access Report Sheet Tree

Analysis Report sheets are specially formatted Worksheets based on a tree structure. You can get
the report tree from a report sheet as below.

Worksheet wks = Project. ActiveLayer() ;

Tree trReport;

uint uid; // to receive the UID of the report range

// true to translate the escaped operation strings(ex. ?$OP:A=1)

// to real dataset name in the r eturned tree

bool bTranslate = true ;

if (wks. GetReportTree(trReport, &uid, 0, GRT_TYPE_RESULTS, true))

{

 out_tree (trReport) ;

}

9.6 Accessing Operations

9.6.1 List All Operations

Many recalculating analysis tools, such as the Statistics on Columns dialog, the Nonlinear Curve
Fitting dialog, etc., are based on the Operation class. After finishing the whole operation, there will be
a lock on the result sheet or result graph. We can list all operations via Project::Operations. The
following code is used to get all operations objects and print out the operation names.

OperationManager opManager;

opManager = Project. Operations ;

int count = opManager. GetCount() ;

for (int index =0; index < count; index ++)

{

 OperationBase & op = opManager. GetOperation(index) ;

 string strName = op. GetName() ;

 out_str (strName) ;

}

9.6.2 Check Worksheet if Hierarchy

If you want to check whether a worksheet is a result table sheet, you can check with layer system
parameters, as in the following code.

Workshe et wks = Project. ActiveLayer() ;

bool bHierarchySheet = (wks. GetSystemParam(GLI_PCD_BITS) &

WP_SHEET_HIERARCHY) ;

if (bHierarchySheet)

http://www.originlab.com/doc/OriginC/ref/Project-Operations

 Projects

141

 out_str ("This is a report table sheet") ;

else

 out_str ("This is not a report table sheet") ;

9.6.3 Accessing Report Sheet

The following code shows how to get a report tree from a report sheet, convert the result gotten from
the report tree into a cell linking format string, and put it into a new worksheet.
This is how to get a report tree from a report sheet. To run this code you need keep a report sheet
active.

Worksheet wks = Project. ActiveLayer() ;

Tree trResult;

wks. GetReportTree(trResult) ;

The following code shows how to get the needed results from the report tree, convert them to a cell
linking format string, and put it into a newly created worksheet.

// Add a new sheet for summary table

WorksheetPage wksPage = wks. GetPage() ;

int index = wksPage. AddLayer() ;

Worksheet wksSummary = wksPage. Layers(index) ;

string st rCellPrefix;

strCellPrefix. Format("cell://%s!" , wks. GetName()) ;

vector <string > vsLabels, vsValues;

// Parameters

vsLabels. Add(strCellPrefix + "Parameters.Intercept.row_label2") ;

vsValues. Add(strCellPrefix + "Parameters.Intercept.Value") ;

vsLabels. Add(str CellPrefix + "Parameters.Slope.row_label2") ;

vsValues. Add(strCellPrefix + "Parameters.Slope.Value") ;

// Statistics

vsLabels. Add(strCellPrefix + "RegStats.DOF.row_label") ;

vsValues. Add(strCellPrefix + "RegStats.C1.DOF") ;

vsLabels. Add(strCellPrefix + "RegS tats.SSR.row_label") ;

vsValues. Add(strCellPrefix + "RegStats.C1.SSR") ;

// put to columns

Column colLabel (wksSummary, 0) ;

Column colValue (wksSummary, 1) ;

colLabel. PutStringArray(vsLabels) ;

colValue. PutStringArray(vsValues) ;

143

1100 Importing

10.1 Importing

One of the huge benefits of Origin is the ability to import data of different formats into a worksheet or
a matrix sheet. Origin C provides this ability to import ASCII and binary data files, image files, video
files, and data from a database. The following sections will show you how to import data into a
worksheet or matrix sheet.

This section covers the following topics:

¶ Importing Data

¶ Importing Images

¶ Importing Videos

10.2 Importing Data

The Worksheet and MatrixLayer classes are derived from the Datasheet class. The Datasheet class
has a method named ImportASCII. The ImportASCII method is used for importing ASCII data files.
There are also ImportExcel and ImportSPC methods for importing Microsoft Excel and spectroscopic
data files, respectively.

10.2.1 Import ASCII Data File into Worksheet

The first example will import an ASCII data file into the active worksheet of the active workbook. It will
first call the AscImpReadFileStruct global function to detect the file's format. The format information is
stored in an ASCIMP structure. The structure will then be passed to the ImportASCII method to do
the actual importing.

string strFile = "D: \ \ data.dat" ; // some data file name

ASCIMP ai;

if (0 == AscImpReadFileStruct (strFile, &ai))

{

 // In this example we will disable the ASCII import progress

 // bar by setting the LabTalk System Variable @NPO to zero.

 // This is optional and is done here to show it is possible.

 // The LTVarTempChange class makes setting and restoring a

 // LabTalk variable easy. See the Accessing LabTalk section

 // for more details about the LTVarTempChange class.

 LTVarTempChange progressBar ("@NPO", 0) ; // 0 = disable progress bar

http://www.originlab.com/doc/OriginC/guide/Importing-Data
http://www.originlab.com/doc/OriginC/guide/Importing-Images
http://www.originlab.com/doc/OriginC/guide/Importing-Videos

Origin C Programming Guide

144

 // Get active worksheet from active work book.

 Worksheet wks = Project. ActiveLayer() ;

 if (0 == wks. ImportASCII(strFile, ai))

 out_str ("Import data successful.") ;

}

The next example will also import an ASCII data file into a worksheet but it will also obtain additional
information about each column from the file, and set up the worksheet columns.

// Prompt user with a File Open dialog to choose a file to import.

st ring strFile = GetOpenBox ("*.dat") ;

if (strFile. IsEmpty())

 return ; // User canceled or error

ASCIMP ai;

if (0 == AscImpReadFileStruct (strFile, &ai))

{

 ai. iAutoSubHeaderLines = 0; // Disable auto detect sub header

 // 1, LongName

 // 2. Units

 // 3. Expanded Description(User defined)

 // 4. Type Indication(User defined)

 ai. iSubHeaderLines = 4;

 // When iAutoSubHeaderLines is false(0), the beginning index of

ai.nLongName,

 // ai.nUnits and ai.nFirstUserParams are f rom main header

 ai. nLongNames = ai. iHeaderLines ;

 ai. nUnits = ai. iHeaderLines + 1;

 // Set the index for the first user params

 ai. nFirstUserParams = ai. iHeaderLines + 2;

 ai. nNumUserParams = 2; // Set the number of user params

 // Not set any header to Comments label

 ai. iMaxLabels = 0;

 // Get active worksheet from active work book.

 Worksheet wks = Project. ActiveLayer() ;

 if (0 == wks. ImportASCII(strFile, ai)) // Return 0 for no error

 {

 // The na mes of the user parameter labels

 vector <string > vsUserLabels = { "Expanded Description" , "Type

Indication" } ;

 // Set user parameter labels to specified names

 Grid grid;

 grid. Attach(wks) ;

 grid. SetUserDefinedLabelNames (vsUserLabels) ;

 wks. AutoSize() ; // Resize column widths to best fit their

contents.

 Importing

145

 }

}

10.2.2 Import ASCII Data File into Matrix Sheet

 Importing data into a matrix sheet is very similar to importing into a worksheet. This example is
almost identical to the first worksheet example. The only difference is we get the active matrix sheet
from the active matrix book using the MatrixLayer class instead of the Worksheet class.

string strFile = "D: \ \ someData.dat" ;

ASCIMP ai;

if (0 == AscImpReadFileStruct (strFile, &ai))

{

 MatrixLayer ml = Project. ActiveLayer() ;

 if (0 == ml. ImportASCII(strFile, ai))

 out_str ("Data imported successfully.") ;

}

10.2.3 Import Data Using an Import Filter

Functions for importing files are declared in the OriginC\Originlab\FileImport.h file. These functions
are also documented in the Origin C Language Reference help file.
Prior to calling the import file functions, you need to first programmatically load and compile
FileImport.c. This can be done from script using the command:

run. LoadOC(Originlab \ FileImport. c, 16) ;

// Option 16 ensures that all dependent Origin C files are loaded,

// by scanning for the corresponding .h in FileImport.c

The following example shows importing data with a filter file.

#include <.. \ Originlab \ FileImport. h>

void import_with_filter_file ()

{

 Page pg = Project. Pages() ; // Active Page

 // Get page book name

 string strPageName = pg. Get Name() ;

 // Get page active layer index

 int nIndexLayer = pg. Layers() . GetIndex() ;

 // Get Origin sample folder

 string strPath = GetAppPath (TRUE) + "Samples \ \ Signal Processing \ \ " ;

 // specify .oif filter name

 string strFilterName = "TR Data Files" ;

 import_file (strPageName, nIndexLayer, strPath + "TR2MM.dat" ,

strFilterName) ;

}

Sometimes the existing filter might need to be modified to meet the requirements of the data format,
so you need to load the filter from the file and configure it. See the following case:

Origin C Programming Guide

146

#include <.. \ Originlab \ FileImport. h>

void config_filter_tree ()

{

 string strFile = GetAppPath (1) + "Samples \ \ Curve Fitting \ \ Step01.dat" ;

 if (! strFile. IsFile())

 return ;

 // load filter to tree

 Tree trFilter;

 string strFilterName = "ASCII" ;

 int nLocation = 1; // build - in Filters folder

 Worksheet wks;

 wks. Create("origin") ;

 WorksheetPage wp = wks. GetPage() ;

 string strPageName = wp. GetName() ;

 int nRet = load_import _filter (strFilterName, strFile,

 strPageName, nLocation, trFilter) ;

 if (0 ! = nRet)

 out_str ("Failed to load import filter") ;

 // update filter tree

 trFilter. iRenameCols . nVal = 0; // 0 to keep default col umn name, 1 to

rename column

 // import data file with filter tree.

 // import_files function supports import multiple files one time.

 vector <string > vsDataFileName;

 vsDataFileName. Add(strFile) ;

 nRet = import_files (vsDataFileName, strPageName, wks. GetIndex() ,

trFilter) ;

 if (0 ! = nRet)

 out_str ("Failed to import file") ;

}

10.2.4 Import Files with Import Wizard

 There are times when the data files are neither ASCII nor simple binary files or there is no existing
filter for importing a data file, in these cases you can use Origin C and impFile X-Functions to import
the files with the Import Wizard.
The Origin C function should have either of the following prototypes:
int YourFunctionName(Page& pgTarget, TreeNode& trFilter, LPCSTR lpcszFile, int nFile)
where:

¶ pgTarget: A reference to a Page object of type worksheet or Matrix. This would be what you

defined in your filter or on the Source page of the Import Wizard, as the target window.

¶ trFilter: A reference to a TreeNode object that holds all the filter settings from your filter file, or

from your wizard specifications, in a tree structure.

¶ lpcszFile: The full path and name of the file that is being imported.

¶ nFile: The file index number in an ordered sequence of imported files (e.g. If you import n files,

your function gets called n times, and nFile is the file count for the file being processed).

 Importing

147

Or
int YourFunctionName(Layer& lyTarget, TreeNode& trFilter, LPCSTR lpcszFile, int nFile)
where:

¶ lyTarget: A reference to a Layer object of type worksheet or Matrix. This would be what you

defined in your filter or on the Source page of the Import Wizard, as the target window.

¶ trFilter: A reference to a TreeNode object that holds all the filter settings from your filter file, or

from your wizard specifications, in a tree structure.

¶ lpcszFile: The full path and name of the file that is being imported.

¶ nFile: The file index number in an ordered sequence of imported files (e.g. If you import n files,

your function gets called n times, and nFile is the file count for the file being processed).

See an example in the \Samples\Import and Export\User Defined folder, found in the Origin
installation folder.

Note: The target window template named on the first page of the Import Wizard (Source page)
is only used when creating new windows (as would happen under some conditions during drag-
and-drop importing). When choosing File: Import, if your active window is consistent with your
import filter's Target Window specification, no new window is created and a reference to the
page object for the active window is passed to your function. If the active window is of a different
type, a new window is created using the specified template, and the page reference to this new
window is passed.

10.2.4.1 Variable Extraction in Import Wizard

 When importing ASCII files with the Import Wizard, you can extract variables from the file headers
using user-defined Origin C functions.
Your custom Origin C function should have the following prototype:
int FuncName(StringArray& saVarNames, StringArray& saVarValues, const StringArray&
saHdrLines, const TreeNode &trFilter);
where:

¶ saVarNames: An string array where the user should put the variable names.

¶ saVarValues: An string array where the user should put the variable values.

¶ saHdrLines: A reference to an string array that contains the header lines. Note that the Origin

C function does not need to read the data file because the header lines are automatically

passed into the function.

¶ trFilter: A reference to a TreeNode object that holds all the filter settings from your filter file, or

from your wizard specifications, in a tree structure.

10.3 Importing Images

Origin C Programming Guide

148

Origin allows you to import images into a matrix or a worksheet cell, and onto a graph. The following
sections will show you how to import images in your Origin C applications.

10.3.1 Import Image into Matrix

 The following example function demonstrates how to import an image file into a matrix. The function
takes three arguments: matrix name, file name, and grayscale depth. The key functions being called
in this example are oimg_image_info and oimg_load_image. The first is used to get information about
the image contained in the image file. The information obtained is used in preparing the target matrix.
The latter function is used to do the actual importing of the image file into the target matrix as
grayscale data values.

#include <import_image. h> // needed for oimg_ functions

bool import_image_to_matrix_data (

 LPCSTR lpcszMatrixName, // matrix b ook name

 LPCSTR lpcszFileName, // image file name

 int nGrayDepth) // import as 8 - bit or 16 - bit gray

{

 // Get the target matrix object

 MatrixObject mo (lpcszMatrixName) ;

 if (! mo. IsValid())

 return false ;

 // Get sou rce image information

 int nWidth, nHeight, nBPP;

 if (! oimg_image_info (lpcszFileName, &nWidth, &nHeight, &nBPP))

 return false ;

 // Set target matrix to same dimensions as source image

 if (! mo.SetSize(nHeight, nWidth, 0))

 r eturn false ;

 // Set target matrix data size

 int nDataType = (16 == nGrayDepth ? FSI_USHORT : FSI_BYTE) ;

 if (! mo.SetInternalData(nDataType, FALSE, FALSE))

 return false ;

 // Import the image into the matrix

 bool bRet;

 if (FSI_USHORT == nDataType)

 {

 Matrix <WORD>& mm = mo.GetDataObject() ;

 bRet = oimg_load_image (lpcszFileName, &mm, 16, nHeight, nWidth) ;

 }

 else // FSI_BYTE

 {

 Matrix <BYTE>& mm = mo.GetDataObject() ;

 bRet = oimg_load _image (lpcszFileName, &mm, 8, nHeight, nWidth) ;

 }

 return bRet;

}

10.3.2 Import Image into Worksheet Cell

 Importing

149

The following example will embed a JPEG image from a file into a worksheet cell. This is
accomplished using the AttachPicture method of the Worksheet class.

int nRow = 0, nCol = 0;

string strFile = "D: \ \ Graph1.jpg" ;

DWORD dwEmbedInfo = EMBEDGRAPH_KEEP_ASPECT_RATIO;

Worksheet wks = Project. ActiveLayer() ;

if (wks. Attach Picture(nRow, nCol, strFile, dwEmbedInfo))

{

 wks. Columns(nCol) . SetWidth(20) ;

 wks. AutoSize() ;

}

10.3.3 Import Image to Graph

The following example will embed a JPEG image from a file onto a graph layer. This is accomplished
using the image_import_to_active_graph_layer global function.

#include <image_utils. h>

// make sure image_utils.c is compiled before calling

// the image_import_to_active_graph_layer function.

LT_execute ("run.LoadOC(Originlab \ \ image_utils.c)") ;

string strFile = "D: \ \ Graph1.jpg" ;

image_import_to_active_grap h_layer (strFile) ;

10.4 Importing Videos

10.4.1 Version Info

Minimum Origin Version Required: OriginPro 93 SR0
Origin C provides the VideoReader class for reading a video file and importing frame(s) of video to
matrix object(s). The class is only available for OriginPro version.
To use the VideoReader class, the header file "VideoReader.h" needs to be included in your source
code.
#include <..\OriginLab\VideoReader.h>
With the VideoReader class you can open a video file and get the video's properties, such as frame
count, frame rate (frame per second), current position, etc. It also provides methods for seeking
frame, seeking time, and reading frame(s) into matrix object(s).
The following example will create a new matrix book, seek 10 frames into a video then load 100
frames into 100 matrix objects in the active matrix sheet by skipping every other frame.

#include <.. \ Originlab \ VideoReader.h> // Include the header file

void Import_Video_E x1 (string strFile = "d: \ t est.avi") {

 MatrixLayer ml;

 ml. Create("Origin") ; // Create a matrix sheet for the frames

 char str [MAXLINE] ;

 VideoReader vr; // Declare a VideoReader

 strcpy(str, strFile) ;

 if (! vr. Open(str)) { // Open the video file

http://www.originlab.com/doc/OriginC/ref/image_import_to_active_graph_layer

Origin C Programming Guide

150

 out_s tr ("Failed to open video file!") ;

 return ;

 }

 // Get number of frames

 int iFrameCount = (int) vr. GetFrameCount() ;

 printf("%u frames \ n" ,iFrameCount) ;

 // Starting frame

 int iOffset = 10;

 // Specify total frames to read

 int iTotalFrames = 100 ;

 // Spec ify frames to skip between each read

 int iSkip = 1; // Read every other frame

 bool bRet = vr. SeekFrame(iOffset) ;

 vr. ReadFrames(ml, iTotalFrames, iSkip) ; // Read frames

 if (vr. ReaderReady()) {

 vr. Close() ; // Close the video reader

 }

}

In this example, time is used as the metric by which we seek and import with time skips..

#include <.. \ Originlab \ VideoReader.h> // Include the header file

void Import_Video_Ex2 (string strFile = "d: \ t est.avi") {

 MatrixLayer ml;

 ml. Create("Origin") ; // Create a ma trix sheet for the frames

 char str [MAXLINE] ;

 VideoReader vr; // Declare a VideoReader

 strcpy(str, strFile) ;

 if (! vr. Open(str)) { // Open the video file

 out_str ("Failed to open video file!") ;

 return ;

 }

 // Get number of frames

 int iFrameCount = (int) vr. GetFrameCount() ;

 // Get frame rate

 double dFPS = vr. GetFPS() ;

 double dRunningTime = iFrameCount / dFPS;

 printf("%u frames at %f fps with a running time of %f seconds \ n" ,

 iFrameCount, dFPS, dRunningTime) ;

 // Setup for read

 double dStartTime = 5; // Begin reading at 5 seconds

 double dSkipLength = 3.333 ; // Skip 3.333 seconds between reads

 vr. SeekFrame((int) dStartTime * dFPS) ; // Calculate frame start

 int iSkip = (int) dSkipLength * dFPS; // Calculate frames to skip

 // Calculate number of frames to actually read

 int iTotalFrames = (int) ((dRunningTime - dStartTime) * dFPS)

 / (iSkip + 1) ;

 vr. ReadFrames(ml, iTotalFrames, iSkip) ; // Read frames

 if (vr. ReaderReady()) {

 vr. Close() ; // Close the video reader

 }

}

151

1111 Exporting

11.1 Exporting

This section covers the following topics:

¶ Exporting Worksheets

¶ Exporting Graphs

¶ Exporting Matrices

¶ Exporting Videos

11.2 Exporting Worksheets

 The Worksheet class has the ExportASCII method for saving worksheet data to a file. The method
has arguments for specifying the starting row and column and the ending row and column. It also
allows you to specify how to handle missing data values and whether column labels should be
exported or not.
All of the examples below assume wks is a valid Worksheet object and strFileName is a string
object containing the full path and name of the target file.
The first example will save all the data in the worksheet to a file using the tab character as the
delimiter and blanks for missing values.

wks. ExportASCII(strFileName,

 WKS_EXPORT_ALL| WKS_EXPORT_MISSING_AS_BLANK) ;

The next example will save all the data in a worksheet to a file, with a comma as the delimiter and
blanks for missing values. In addition the column labels are also saved.

wks. ExportASCII(strFileName,

WKS_EXPORT_ALL| WKS_EXPORT_LABELS| WKS_EXPORT_MISSING_AS_BLANK,

 ',') ;

The final example will save the first two columns of data in a worksheet to a file, using a comma as
the delimiter and blanks for missing values. In addition, the column labels are also saved. Row and
column indices start with zero. The end row and column indices can also be -1 to indicate the last row
or last column, respectively.

wks. ExportASCII(strFileName,

WKS_EXPORT_ALL| WKS_EXPORT_LABELS| WKS_EXPORT_MISSING_AS_BLANK,

http://www.originlab.com/doc/OriginC/guide/Exporting-Worksheets
http://www.originlab.com/doc/OriginC/guide/Exporting-Graphs
http://www.originlab.com/doc/OriginC/guide/Exporting-Matrices
http://www.originlab.com/doc/OriginC/guide/Exporting-Videos
http://www.originlab.com/doc/OriginC/ref/Worksheet-ExportASCII

Origin C Programming Guide

152

 ' \ t ' ,

 0, 0, // start with first row, first column

 - 1, 1) ; // end with last row, second column

11.3 Exporting Graphs

 Origin allows users to export graphs to several different image file types. Origin C allows access to
this ability using the global export_page and export_page_to_image functions.
The following example will export all the graphs in the project to EMF files. The EMF file names will
be the same as the graph names, and will be located in the root of drive C.

string strFileName;

foreach (GraphPage gp in Project. GraphPages)

{

 strFileName. Format("c: \ \ %s.emf" , gp. GetName()) ;

 export_page (gp, strFileName, "EMF") ;

}

The next example will export the active graph to an 800x600 JPEG file. The JPEG file name will be
the name of the graph and will be located in the root of drive C.

GraphPage gp;

gp = Project. ActiveLayer() . GetPage() ;

if (gp) // if active page is a graph

{

 string strFileName;

 strFileName. Format("c: \ \ %s.emf" , gp. GetName()) ;

 export_page_to_image (strFileName, "JPG" , gp, 800 , 600 , 8) ;

}

11.4 Exporting Matrices

An Origin Matrix can be exported to an ASCII data file or an image file.

11.4.1 Export Matrix to ASCII Data File

The following example shows how to export ASCII data from the active matrix window to a *.txt file.
You need to add #include <oExtFile.h> for the export_matrix_ascii_data function.

file ff;

if (! ff. Open("C: \ \ ExpMatData.txt" , file ::modeCreate | file ::modeWrite))

 return ; //fail to open file for write

string strRange;

MatrixLayer ml = Project. ActiveLayer() ;

ml. GetRangeString(strRange) ;

LPCSTR lpcszSep = " \ t " ;

vector <string > vXLabels, vYLabels; // empty means no label

DWORD dwCntrl = GDAT_FULL_PRECISION |

GDAT_MISSING_AS_DASHDASH;

// return 0 for no error

http://www.originlab.com/doc/OriginC/ref/export_page
http://www.originlab.com/doc/OriginC/ref/export_page_to_image
http://www.originlab.com/doc/OriginC/ref/export_matrix_ascii_data

 Exporting

153

int nErr = export_matrix_ascii_data (&ff, strRange, ml. GetNumRows() ,

 ml. GetNumCols() , lpcszSep, &vXLabels, &vYLabels, dwCntrl) ;

11.4.2 Export Image from Matrix to Image File

The following example shows how to export a matrix to an image file.
Prior to running the following example, the image_utils.c file need to be loaded and compiled. This
can be done from script with the following command or just add this file to your workspace.

run. LoadOC(Originlab \ image_utils. c) ;

And need to add #include <image_utils.h> for the export_Matrix_to_image function.

MatrixLayer ml = Project. ActiveLayer() ;

MatrixObject mo = ml. MatrixObjects() ;

export_Matrix_to_image ("c: \ \ matrixImg.jpg" , "jpg" , mo) ;

11.5 Exporting Videos

11.5.1 Version Info

Minimum Origin Version Required: Origin 9 SR0
Origin allows user to create a video with a collection of graphs. Origin C allows access to this ability
using the Video Writer, you can define the video codec for compression (Please refer to FourCC
Table for more details.), create a video writer project specifying the video name, path, speed and
dimension, write graph pages as frames.
Note: To use the video writer, you must include its head file:
#include <..\OriginLab\VideoWriter.h>
The following example will write each graph in the project as a frame into the video, and the video is
uncompressed with 2 frames/second speed and 800px * 600 px dimension.

 // Use the raw format without compression.

 int codec = CV_FOURCC(0, 0, 0, 0) ;

 // Create a VideoWriter object.

 VideoWriter vw;

 int err = vw. Create("D: \ \ example.avi" , codec, 2, 800 , 600) ;

 if (0 == err)

 {

 foreach (GraphPage grPg in Project. GraphPages)

 // write the gr aph page into the video

 err = vw. WriteFrame(grPg) ;

 }

 // Release the video object when finished.

 vw. Release() ;

 return err;

The following example shows how to individually write a graph page into video and define the number
of frames of this graph page in the video.

http://www.originlab.com/doc/OriginC/ref/export_Matrix_to_image
http://www.originlab.com/doc/LabTalk/ref/FourCC-Table
http://www.originlab.com/doc/LabTalk/ref/FourCC-Table

Origin C Programming Guide

154

 GraphPage gp ("Graph1") ;

 // The defined graph page will last for 10 frames.

 int nNumFrames = 10;

 vw. WriteFrame(gp, nNumFrames) ;

155

1122 Analysis and Applications

12.1 Analysis and Applications

 Origin C supports functions that are valuable to data analysis, as well as mathematic and scientific
applications. The following sections provide examples on how to use the more common of these
functions, broken down by categories of use.

This section covers the following topics:

¶ Mathematics

¶ Statistics

¶ Curve Fitting

¶ Signal Processing

¶ Peaks and Baseline

¶ Using NAG Functions

12.2 Mathematics

12.2.1 Normalize

The following example shows how to pick a point in a data plot (curve) and then normalize all curves
in the layer to the same value at that point. This snippet of code assumes a graph layer with multiple
curves is active and all curves share the same X values. This assumption is typical in spectroscopy.

GraphLayer gl = Project. ActiveLayer() ;

if (! gl)

 return ;

// Allow user to click and select one particular point of one particular

curve

GetGraphPoints mypts;

mypts. SetFollowData(true) ;

mypts. GetPoints(1, gl) ;

http://www.originlab.com/doc/OriginC/guide/Mathematics
http://www.originlab.com/doc/OriginC/guide/Statistics
http://www.originlab.com/doc/OriginC/guide/Curve-Fitting
http://www.originlab.com/doc/OriginC/guide/Signal-Processing
http://www.originlab.com/doc/OriginC/guide/Peaks-and-Baseline
http://www.originlab.com/doc/OriginC/guide/Using-NAG-Functions

Origin C Programming Guide

156

vector vx, vy;

vector <int > vn;

if (mypts. GetData(vx, vy, vn) == 1)

{

 // Save index and y value of picked point

 int nxpicked = vn [0] - 1;

 double dypicked = vy [0] ;

 // Loop over all data pl ots in layer

 foreach (DataPlot dp in gl. DataPlots)

 {

 // Get the data range and then the y column for current plot

 XYRange xy;

 Column cy;

 if (dp. GetDataRange(xy) && xy. GetYColumn(cy))

 {

 // Get a ve ctor reference to y values from the y column

 vectorbase &vycurrent = cy. GetDataObject() ;

 // Scale vector so y value matches user - picked point

 vycurrent * = dypicked / vycurrent [nxpicked] ;

 }

 }

}

12.2.2 Interpolation/Extrapolation

The ocmath_interpolate function is used to do interpolation/extrapolation with modes of Linear,
Spline and B-Spline.

// Make sure there are 4 columns in active worksheet

// The first two columns are source xy data,

// 3rd column has input x data, 4th column to put output y.

Worksheet wks = Project. ActiveLayer() ;

wks. SetSize(- 1, 4) ;

DataRange drSource;

drSource. Add(wks, 0, "X") ; // 1st column - source x data

drSource. Add(wks, 1, "Y") ; // 2nd column - source y data

vector vSrcx, vSrcy;

drSource. GetData(&vSrcx, 0) ;

drSource. GetData(&vSrcy, 1) ;

DataRange drOut;

drOut. Add(wks, 2, "X") ; // 3rd column - input x data

drOut. Add(wks, 3, "Y") ; // 4th column - interpolated y data

vector vOutx, vOuty;

drOut. GetData(&vOutx, 0) ;

int nSrcSize = vSrcx. GetSize() ;

int nOutSize = vOutx. GetSize() ;

vOuty. SetSize(nOutSiz e) ;

int nMode = INTERP_TYPE_BSPLINE;

http://www.originlab.com/doc/OriginC/ref/ocmath_interpolate

 Analysis and Applications

157

double dSmoothingFactor = 1;

int iRet = ocmath_interpolate (vOutx, vOuty, nOutSize, vSrcx, vSrcy,

nSrcSize,

nMode, dSmoothingFactor) ;

drOut. SetData(&vOuty, &vOutx) ;

12.2.3 Integration

Origin C provides access to NAG's integral routines to perform integration. With Origin C and NAG
you can do integration on a normal integrand, an integrand with parameters, an integrand with
oscillation, an infinite integral, higher dimension integration, and more. The following examples show
how to do integration with NAG.
Your Origin C code will need to include the NAG header file at least once before your code calls any
NAG functions.

#include <OC_nag. h> // NAG declarations

12.2.3.1 Simple Integral Function

 The first example shows how to do a basic integration on a simple integrand with only one
integration variable.

// NAG_CALL denotes proper calling convention. You may treat it

// like a function pointer and define your own integrand

double NAG_CALL func (double x)

{

 return (x* sin(x* 30.0) / sqrt(1.0 - x* x/ (PI * PI * 4.0))) ;

}

void nag_d01ajc_ex ()

{

 double a = 0.0 ;

 double b = PI * 2.0 ; // integration interval

 double epsabs, abser r, epsrel, result;

 // you may use epsabs and epsrel and this quantity to enhance your

desired

 // precision when not enough precision encountered

 epsabs = 0.0 ;

 epsrel = 0.0001 ;

 // The max number of sub - intervals needed to evaluate the function

in th e

 // integral. For most cases 200 to 500 is adequate and recommmended.

 int max_num_subint = 200 ;

 Nag_QuadProgress qp;

 NagError fail;

 d01ajc (func, a, b, epsabs, epsrel, max_num_subint, &result, &abserr,

 &qp, &fail) ;

 // For the error othe r than the following three errors which are due

to

 // bad input parameters or allocation failure. You will need to free

Origin C Programming Guide

158

 // the memory allocation before calling the integration routine

again

 // to avoid memory leakage

 if (fail. code ! = NE_INT_ARG_LT && fail. code ! = NE_BAD_PARAM &&

 fail. code ! = NE_ALLOC_FAIL)

 {

 NAG_FREE(qp. sub_int_beg_pts) ;

 NAG_FREE(qp. sub_int_end_pts) ;

 NAG_FREE(qp. sub_int_result) ;

 NAG_FREE(qp. sub_int_error) ;

 }

 printf("%g\ n" , result) ;

}

12.2.3.2 Integral Function with Parameters

 The next example shows how to define and perform integration on an integrand with parameters.
Notice that the parameters are passed to the integrator by a user-defined structure. This avoids
having to use static variables as parameters of the integrand, and makes it thread-safe.
This example can also be adapted to use NAG's infinite integrator. For instance, by enabling the line
calling the infinite integrator d01smc function, the example can be used to perform infinite integration.

struct user // integrand parameters

{

 double A;

 double Xc;

 double W;

} ;

// Function supplied by user, return the value of the integrand at a given

x.

static double NAG_CALL f_callback (double x, Nag_User * comm)

{

 struct user * param = (struct user *)(comm- >p) ;

 return param - >A * exp(- 2 * (x - param - >Xc) * (x - param - >Xc)

 / param - >W / param - >W) / (param - >W * sqrt(PI / 2)) ;

}

Now, we set parameter values for the function and define the additional parameters necessary to
perform the integration. The integration is then performed by a single function call, passing the
parameters as arguments.

void nag_d01sjc_ex ()

{

 double a = 0.0 ;

 double b = 2.0 ; // integration interval

 // The fol lowing variables are used to control

 // the accuracy and precision of the integration.

 double epsabs = 0.0 ; // absolute accuracy, set negative to use

relative

 double epsrel = 0.0001 ; // relative accuracy, set negative to use

absolute

 Analysis and Applications

159

 int max_num_subint = 200 ; // max sub - intervals, 200 to 500 is

recommended

 // Result keeps the approximate integral value returned by the

algorithm

 // abserr is an estimate of the error which should be an upper bound

 // for |I - result| wher e I is the integral value

 double result, abserr;

 // The structure of type Nag_QuadProgress, it contains pointers

 // allocated memory internally with max_num_subint elements

 Nag_QuadProgress qp;

 // The NAG error parameter (structure)

 NagError fail;

 // Parameters passed to integrand by NAG user communication struct

 struct user param;

 param. A = 1.0 ;

 param. Xc = 0.0 ;

 param. W = 1.0 ;

 Nag_User comm;

 comm.p = (Pointer) ¶m;

 // Perform integration

 // There are 3 kinds of infinite boundary types you can use in Nag

infinite

 // integrator Nag_LowerSemiInfinite, Nag_UpperSemiInfinite,

Nag_Infinite

 /*

 d01smc(f_callback, Nag_LowerSemiInfinite, b, epsabs, epsrel,

max_num_subint,

 &res ult, &abserr, &qp, &comm, &fail);

 */

 d01sjc (f_callback, a, b, epsabs, epsrel, max_num_subint,

 &result, &abserr, &qp, &comm, &fail) ;

 // check the error by printing out error message

 if (fail. code ! = NE_NOERROR)

 printf("%s\ n" , fail. message) ;

 // For errors other than the following three errors which are due to

 // bad input parameters, or allocation failure,

 // you will need to free the memory allocation before calling the

 // integration routine again to avoid memory leakage.

 if (fail. code ! = NE_INT_ARG_LT && fail. code ! = NE_BAD_PARAM

 && fail. code ! = NE_ALLOC_FAIL)

 {

 NAG_FREE(qp. sub_int_beg_pts) ;

 NAG_FREE(qp. sub_int_end_pts) ;

 NAG_FREE(qp. sub_int_result) ;

 NAG_FREE(qp. sub_int_error) ;

 }

 printf("%g\ n" , result) ;

}

Origin C Programming Guide

160

12.2.3.3 Multi-dimension Integral Function

 For integrals of dimension higher than 2, you can call the NAG integrator function d01wcc to perform
the integration.
Our user defined call back function will be passed to the NAG d01wcc function.

double NAG_CALL f_callback (int n, double * z, Nag_User * comm)

{

 double tmp_pwr;

 tmp_pwr = z[1] +1.0 +z[3] ;

 return z[0] * 4.0 * z[2] * z[2] * exp(z[0] * 2.0 * z[2]) / (tmp_pwr * tmp_pwr) ;

}

Main function:

void nag_d01wcc_ex ()

{

 // Input variables

 int ndim = NDIM; // the integral dimension

 double a[4] , b [4] ;

 for (int ii =0; ii < 4; ++ii) // integration interval

 {

 a[ii] = 0.0 ;

 b[ii] = 1.0 ;

 }

 int minpts = 0;

 int maxpts = MAXPTS; / / maximum number of function evaluation

 double eps = 0.0001 ; // set the precision

 // Output variable

 double finval, acc;

 Nag_User comm;

 NagError fail;

 d01wcc (ndim, f_callback, a, b, &minpts, maxpts, eps, &finval, &acc,

 &comm, &fail) ;

 if (fail. code ! = NE_NOERROR)

 printf("%s\ n" , fail. message) ;

 if (fail. code == NE_NOERROR || fail. code ==

NE_QUAD_MAX_INTEGRAND_EVAL)

 {

 printf("Requested accuracy =%12.2e \ n" , eps) ;

 printf("Estimated value =%12.4f \ n" , finval) ;

 printf("Estimated ac curacy =%12.2e \ n" , acc) ;

 }

}

12.2.4 Differentiation

The ocmath_derivative function is used to do simple derivative calculations without smoothing. The
function is declared in ocmath.h as shown below.

int ocmath_derivative (

http://www.originlab.com/doc/OriginC/ref/ocmath_derivative

 Analysis and Applications

161

 const double * pXData, double * pYData, uint nSize, DWORD dwCntrl = 0) ;

The function ignores all missing values and computes the derivative by taking the average of the two
slopes between the point and each of its neighboring data points. If the dwCntrl argument uses the
default value of 0, the function fills in the average when data changes direction.

if (OE_NOERROR == ocmath_derivative (vx, vy, vx. GetSize()))

 out_str ("successfully") ;

If dwCntrl is set to DERV_PEAK_AS_ZERO, the function fills in zero if data changes direction.

if (OE_NOERROR == ocmath_derivative (vx, vy, vx. GetSize() ,

DERV_PEAK_AS_ZERO))

 out_str ("successfully") ;

12.3 Statistics

 Often we want to do statistics on the selected data in a worksheet, i.e. one column, one row, or an
entire worksheet. The Working with Data: Numeric Data: DataRange chapter shows how to
construct a data range object by column/row index, then get the raw data into a vector.

12.3.1 Descriptive Statistics on Columns and Rows

The ocmath_basic_summary_stats function is used to compute basic descriptive statistics, such as
total number, mean, standard deviation, and skewness, for raw data. For more details, refer to Origin
C help. The following Origin C code calculates and outputs the number of points, the mean, and the
standard error of mean on the data in the vector object named vData.

int N;

double Mean, SE;

ocmath_basic_summary_stats (vData. GetSize() , vData, &N, &Mean, NULL, &SE) ;

printf("N=%d\ nMean=%g\ nSE=%g\ n" , N, Mean, SE) ;

12.3.2 Frequency Count

The ocmath_frequency_count function is used to calculate the frequency count, according to the
options in the FreqCountOptions structure.

// Source data to do frequency count

vector vData = { 0.11 , 0.39 , 0.43 , 0.54 , 0.68 , 0.71 , 0.86 } ;

// Set options, including bin size, from, to and border settings.

int nBinSize = 5;

Fr eqCountOptions fcoOptions;

fcoOptions. FromMin = 0;

fcoOptions. ToMax = 1;

fcoOptions. StepSize = nBinSize;

fcoOptions. IncludeLTMin = 0;

fcoOptions. IncludeGEMax = 0;

vector vBinCenters (nBinSize) ;

vector vAbsoluteCounts (nBinSize) ;

vector vCumulativeCount s(nBinSize) ;

http://www.originlab.com/doc/OriginC/guide/Numeric-Data
http://www.originlab.com/doc/OriginC/ref/ocmath_basic_summary_stats
http://www.originlab.com/doc/OriginC/ref/ocmath_frequency_count

Origin C Programming Guide

162

int nOption = FC_NUMINTERVALS; // to extend last bin if not a full bin

int nRet = ocmath_frequency_count (

 vData, vData. GetSize() , &fcoOptions,

 vBinCenters, nBinSize, vAbsoluteCounts, nBinSize,

 vCumulativeCounts, nBinSize, nOption) ;

if (STATS_NO_ERROR == nRet)

 out_str ("Done") ;

In addition, there are two functions to calculate frequency count for discrete/categorical data. One is
ocu_discrete_frequencies for text data, and the other is ocmath_discrete_frequencies for numeric
data. Also, there are two functions to calculate frequency count on 2 dimensions:
ocmath_2d_binning_stats and ocmath_2d_binning.

12.3.3 Correlation Coefficient

The ocmath_corr_coeff function is used to calculate the Pearson rank, Spearman rank and Kendall
rank correlation coefficients.

matrix mData = {{ 10, 12, 13, 11} , { 13, 10, 11, 12} , { 9, 12, 10, 11}} ;

int nRows = mData. GetNumRows() ;

int nCols = mData. GetNumCols() ;

matrix mPeaCorr (nCols, nCols) ;

matrix mPeaSig (nCols, nCols) ;

matrix mSpeCorr (nCols, nCols) ;

matrix mSp eSig (nCols, nCols) ;

matrix mKenCorr (nCols, nCols) ;

matrix mKenSig (nCols, nCols) ;

if (STATS_NO_ERROR == ocmath_corr_coeff (nRows, nCols, mData, mPeaCorr,

mPeaSig,

 mSpeCorr, mSpeSig, mKenCorr, mKenSig))

{

 out_str ("Done") ;

}

12.3.4 Normality Test

Use the *ocmath_shapiro_wilk_test function to perform a Shapiro-Wilk Normality Test. Use the
*ocmath_lilliefors_test function to perform a Lilliefors Normality Test. Use the
*ocmath_kolmogorov_smirnov_test function to perform a Kolmogorov-Smirnov Normality Test.

vector vTestData = { 0.11 , 0.39 , 0.43 , 0.54 , 0.68 , 0.71 , 0.86 } ;

NormTestResults SWRes;

if (STATS_NO_ERROR == ocmath_shapiro_wilk_test (vTestData. GetSize() ,

vTestData,

 &SWRes, 1))

{

 printf("DOF=%d, TestStat=%g, Prob=%g \ n" , SWRes. DOF, SWRes. TestStat ,

SWRes.Prob) ;

http://www.originlab.com/doc/OriginC/ref/ocu_discrete_frequencies
http://www.originlab.com/doc/OriginC/ref/ocmath_discrete_frequencies
http://www.originlab.com/doc/OriginC/ref/ocmath_2d_binning_stats
http://www.originlab.com/doc/OriginC/ref/ocmath_2d_binning
http://www.originlab.com/doc/OriginC/ref/ocmath_corr_coeff
http://www.originlab.com/doc/OriginC/ref/ocmath_shapiro_wilk_test
http://www.originlab.com/doc/OriginC/ref/ocmath_lilliefors_test
http://www.originlab.com/doc/OriginC/ref/ocmath_kolmogorov_smirnov_test

 Analysis and Applications

163

}

12.4 Curve Fitting

12.4.1 Curve Fitting

This section covers the following topics:

¶ Linear Fitting

¶ Polynomial Fitting

¶ Multiple Regression

¶ Non-linear Fitting

¶ Find XY

12.4.2 Linear Fitting

To perform a linear fitting routine in Origin C, you can use the ocmath_linear_fit function. With this
function, you can do linear fitting with weight, and then you can get the fitting results, including
parameter values, statistical information, etc.
The following procedure will show how to perform linear fitting in Origin C by using this function, and
the results will output to the specified windows and worksheet.

12.4.2.1 Perform Linear Fitting

Before starting linear fitting, please import the desired data, here need one independent and one
dependent.
Now, begin the Origin C routine. Three steps are needed.

1. New a c file and add an empty function as the below. Copy the codes from the following steps

into this function.

#include <GetNBox. h> // used for GETN_ macros

void linearfit ()

{

}

http://www.originlab.com/doc/OriginC/guide/Linear-Fitting
http://www.originlab.com/doc/OriginC/guide/Polynomial-Fitting
http://www.originlab.com/doc/OriginC/guide/Multiple-Regression
http://www.originlab.com/doc/OriginC/guide/Non-linear-Fitting
http://www.originlab.com/doc/OriginC/guide/Find-XY
http://www.originlab.com/doc/OriginC/ref/ocmath_linear_fit

